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Abstract

We study the task of zero-shot learning of fine-grained bird types from Wikipedia
articles. We qualitatively investigate and improve GAZSL [29], a state-of-the-art
system for this setting. In this we show qualitative and quantitative evidence that
models use only a small fraction of words from each article — a complementary
finding to prior textual noise suppression on this task —, but nevertheless learn
correct visual semantics such as colors. However due to GAZSL’s unigram-based
text encoding it cannot model the semantic difference between a bird with a
YELLOW BEAK AND WHITE BODY, and a bird with a YELLOW BODY AND WHITE
BEAK. To address this limitation we modify the model to allow for higher orders
of composition, and empirically validate improvements in test accuracy, marginally
beating the state-of-the-art on the default split of Caltech-UCSD Bird-2011.

1 Introduction

Traditional supervised recognition techniques require a large number of training data for every
category. Unfortunately, objects have a long-tailed distribution, and it can be hard to find examples
for some “rare” categories. Zero-shot learning aims to solve this problem by transferring knowledge
from seen classes to unseen ones.

The key challenge of zero-shot learning is to find an intermediate representation for each class.
Previous work uses attributes [8, 13, 14], word embeddings [9, 16, 28], textual descriptions [6, 7, 15,
20, 21, 29], and knowledge graphs [26] to learn class semantic representation. In this work, we study
the zero-shot learning setting where each category is associated with a Wikipedia article. We focus
on a state-of-the-art system for this setup [29] and address two questions:

1. What textual semantics does the model learn?

2. Can we improve test accuracy with a more powerful text encoder?

For the first question, we find that the model predictions are mostly based on only a few words from
the text descriptions. In particular, the category names are visually predictive by themselves. Our
qualitative analysis demonstrate that the model can correctly align simple visual attributes such as
colors to words.

For the second question, we experiment with adding bigram features to capture higher order word
compositio, which slightly improves the performance. We also try initializing word embedding layer
with pre-trained word vectors, but this surprisingly hurts test accuracy.
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Figure 1: Test accuracy on CUB with different number of word features. For each test class, we
remove all words except for the top-k word types (ranked by TF-IDF). Using only k = 10 word types
achieves a similar test accuracy as using all word features (41.6% vs. 43.7%), indicating that most
words are irrelevant for the model.

2 Background: GAZSL

This section introduces our starting point, GAZSL [29], a zero-shot learning approach based on
generative adversarial networks (GAN). The high-level idea of GAZSL is to train a conditional
GAN [22] to “imagine” image features from a text description. This reduces zero-shot learning to
classic supervised learning, since we can now generate training examples for unseen classes from its
description. We summarize the method below.

The first step of GAZSL is to extract visual features for each training image, which serve as real
examples for the GAN. In particular, GAZSL uses a Visual Part Detector/Encoder network [27] as the
image encoder. For each training class, the Wikipedia description is encoded by transforming the
TF-IDF vector with a multi-layer perceptron. The text feature vector is concatenated with a Gaussian
noise as input to the generator network.

The generator is trained to output realistic image features, and the discriminator is trained to dif-
ferentiate real image features from fake ones. The authors use auxiliary classifier GAN [17] with
Wasserstein distance objective [1] and gradient penalty [11]. To help the generator match the real
data distribution, a visual pivot regularizer is applied to encourage the mean of the generated features
for each class to match the mean of the real samples.

At test time, sixty “hallucinated” image features are generated for each test class, and class labels
are predicted with nearest neighbor search. For all our experiments, we use Caltech-UCSD Birds
2011 (CUB) [25] dataset with default split. The original GAZSL has a state-of-the-art 43.7% test
accuracy1 on this dataset.

3 What does the Model Learn?

In our first set of experiments, we investigate what textual semantics GAZSL can capture by answering
two questions: (1) how many word features are predictive for the model, and (2) how the model
learns to map words into image feature space.
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Figure 2: Top four nearest training classes for the word albatross in the image feature space. The first
two classes are albatross, and the other two are visually similar to an albatross.

Figure 3: Top four nearest training classes for the word yellow in the image feature space. All four
classes have yellow parts: head and body, head, neck, and bill (from left to right).

3.1 Varying Number of Word Features

Wikipedia articles are long and noisy. For example, only three out of fifteen paragraphs in the article
for black-footed albatross contain information relevant to visual recognition. Therefore, we conjecture
that only a few keywords from each article are visually predictive. To verify our hypothesis, we
experiment with removing a large portion of text. For each test class, we rank the word types by
TF-IDF scores and remove all words except the top-k word types.2 Figure 1 shows test accuracy for
different k. The test accuracy only drops for 2% (41.6% vs. 43.7%) when using 10 word features per
class, which confirms that most words are not useful to the model.

We notice that category names are often predictive by themselves. The model has 37.3% test accuracy
(6.4% drop) if we only use the category name as its text description. One reason is that many category
names in CUB have super-category information. For example, one of the test classes is the black-
footed albatross, and it is closely related to two training classes: sooty albatross and laysan albatross.
As a result, the model can use the word albatross to transfer knowledge from the two training albatross
class to the unseen black-footed albatross. When evaluating on a super-category-exclusive split of
CUB proposed in [7], GAZSL only has 10.3% test accuracy, which proves that the model heavily relies
on super-categories to transfer knowledge.

3.2 Text to Image Feature

The generator in GAZSL maps text to the image feature space. We qualitatively study this map with a
nearest-neighbor analysis. Given some text w, we compute an average image feature as following: we
feed w into the generator, sample sixty image features, and take their average as the image embedding
for w. We use this process to generate embeddings for all training classes (from their Wikipedia
article) and every word in the vocabulary.

Figure 2 shows the nearest training classes for the word albatross. As expected, the top-2 classess are
both albatross.3 The other neighboring classes seem to be visually similar to albatross. Interestingly,
the model seems to know the concept of yellow — the four closest training classes all have some
yellow part (Figure 3). We observe a similar pattern for other colors, which shows that the model is
capable of matching some visual attributes to the correct word.

4 Improving Text Encoder

In this section, we report our experiments on improving the text encoder of GAZSL. As mentioned
before, all our experiments are run on the CUB dataset with default split, and we compare models

1We only use top-1 accuracy in this paper.
2Stop words are already removed in the original GAZSL model.
3There are only two albatross training classes.
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Table 1: Top-1 accuracy on the default split of CUB. The systems are sorted according to best accuracy.
The highlighted row is the replicated state-of-the-art result of the original GAZSL [29]. Our best
model marginally beats the baseline. We find TF-IDF weighting is crucial for good performance, and
stemming slightly hurts test accuracy. Suprisingly, initializing with pre-trained word embeddings
does not improve accuracy.

Feature N -gram Stemming Embedding Best Accuracy (Mean ± Std)

TF-IDF 1 + 2 False Random 44.562 (43.721± 0.748)
TF-IDF 1 False Random 44.050 (43.800± 0.276)
TF-IDF 1 True Random 43.778 (43.562± 0.290)
TF-IDF 1 + 2 True Random 43.539 (43.414± 0.120)
TF-IDF 1 False GloVe 41.493 (40.175± 1.182)
TF-IDF 1 True GloVe 41.186 (41.096± 0.129)
TF-IDF 1 True FastText 40.198 (39.914± 0.309)
Count 1 False Random 39.277 (38.232± 1.291)
TF-IDF 1 False FastText 39.107 (38.879± 0.336)
Count 1 + 2 False Random 38.220 (37.879± 0.325)
Count 1 True GloVe 30.003 (27.446± 2.238)
Count 1 True FastText 27.924 (26.821± 1.314)

with top-1 accuracy. Each experiment is repeated three times, and we report the max, mean, and
standard deviation of accuracies. We experiment with two extensions: adding bigram features and
initialize with pre-trained word embeddings. Table 1 summarizes our experiments, which we will
discuss in detail.4

4.1 Yellow Beak or Yellow Neck: Compositionality

Since the text model in GAZSL is based on stemmed unigrams, it cannot model compositionality
beyond co-occurrence. This naturally leads to the inability to pair descriptors like color with
corresponding body parts. For example, yellow body and white beak has the same bag-of-word
feature vector as yellow beak and white body, and yet the two phrases describe very different birds.
To partially alleviate the lack of composition in GAZSL we modify the original model to use a
combination of unigrams and bigrams5 with results shown in Table 1. We find that while the test
accuracy improves, the gain is limited (0.8% absolute increase).

In implementing bigram features, we also experiment with turning off the Porter stemmer and use a
count vector instead of TF-IDF. We confirm that TF-IDF weighting is crucial as it suppresses some
noise in the text. However, we find that stemming actually hurts test accuracy.

4.2 Pre-trained Word Embedding

Although we do not experimentally validate, we suspect that the model fails to learn the semantics of
many bigrams due to the small size of the text corpus (200 Wikipedia articles). A natural solution to
data-scarcity challenges is to use transfer learning. In GAZSL the word representations are initialized
with Xavier random initialization [10] which implies that the entirety of their text representations
is based a small corpus of 200 articles. In contrast, it is standard and effective in natural language
processing systems to initialize the word embedding layer with weights learned from large unlabeled
corpora [4]. To test if GAZSL can be improved we compare initializing word embeddings with
pre-trained GloVe [18] and FastText [3] word vectors, which are trained on billion-word corpora.

Surprisingly we find that pre-trained word embeddings degrades test accuracy in every configuration.
We hypothesize that this may be related to learning dynamics affected by not using Xavier initialization
so compared the accuracy curves versus optimization iteration in Figure 4. We observe that initial
performance is significantly better using GloVe, but both GloVe and FastText initialized models
converge to a worse solution than randomly initialized embeddings. We leave further investigation of

4In our experiments we tried significantly more configurations than shown, totally 175 experimental runs.
5To restrict the vocabulary size, we only use 20,000 bigrams selected by highest IDF scores.
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Figure 4: Learning curve for the best unigram based models from Table 1. When initializing with
Glove or FastText embeddings, the test accuracy is better at the beginning, but converges to a worse
solution.

this behavior to future work, and note that regularization techniques such as Batch Normalization [12]
and Layer Normalization [2] may prove effective.

5 Conclusion and Future Work

In this work, we study the task of zero-shot recognition with the help of Wikipedia articles. We
carefully study a state-of-the-art system, GAZSL. We find that the model uses only a fraction of text
for prediction, and the model is capable of aligning some words to visual attributes such as color. We
extend the text encoder by adding bigram features and initializing with pre-trained word embeddings.
Our best system marginally improves the test accuracy on CUB by 0.8%.

Our initial attempts at improving over GAZSL are focused on using text encoders with a sophisticated
composition function. For example, we attempt to use sequence models (RNN, CNN, and Trans-
former [24]) and pretrained contextualized word embeddings [5, 19]. The primary challenge in using
these methods is that the input text are too long, which makes training probihitively expensive. One
possible solution is to down-sample the text, which we leave to future work. Another challenge is that
the training signal may be too noisy for a sequence model — as the authors identify and we confirm,
only a small fraction of terms on a page matter. Therefore, we instead experiment with adding bigram
features, which adds a little expressiveness to the model while keeping training tractable.

In the future, we plan to repeat our experiments on other datasets, such as the super-category-exclusive
split for CUB [6] and the North America Bird [23] dataset. We also plan to look beyond Wikipedia
articles — we hope to experiment with sequence models using a textual knowledge source that is less
noisy than Wikipedia descriptions.
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