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Humans ask questions to learn about the world and to test knowledge under-

standing. The ability to ask questions combines aspects of intelligence unique to

humans: language understanding, knowledge representation, and reasoning. Thus,

building systems capable of intelligent question answering (qa) is a grand goal of

natural language processing (nlp). To measure progress in nlp, we create “exams”

for computer systems and compare their effectiveness against a reference point—

often based on humans. How precisely we measure progress depends on whether

we are building computer systems that optimize human satisfaction in information-

seeking tasks or that measure progress towards intelligent qa. In the first part of

this dissertation, we explore each goal in turn, how they differ, and describe their

relationship to qa formats. As an example of an information-seeking evaluation, we

introduce a new dialog qa task paired with a new evaluation method. Afterward,

we turn our attention to using qa to evaluate machine intelligence.



A good evaluation should be able to discriminate between lesser and more

capable qa models. This dissertation explores three ways to improve the discrim-

inative power of qa evaluations: (1) dynamic weighting of test questions, (2) a

format that by construction tests multiple levels of knowledge, and (3) evaluation

data that is created through human-computer collaboration.

By dynamically weighting test questions, we challenge a foundational assump-

tion of the de facto standard in qa evaluation—the leaderboard. Namely, we con-

tend that contrary to nearly all qa and nlp evaluations which implicitly assign

equal weights to examples by averaging scores, that examples are not equally use-

ful for estimating machine (or human) qa ability. As any student may tell you,

not all questions on an exam are equally difficult and in the worst-case questions

are unsolvable. Drawing on decades of research in educational testing, we propose

adopting an alternative evaluation methodology—Item Response Theory—that is

widely used to score human exams (e.g., the sat). By dynamically weighting ques-

tions, we show that this improves the reliability of leaderboards in discriminating

between models of differing qa ability while also being helpful in the construction

of new evaluation datasets.

Having improved the scoring of models, we next turn to improving the format

and data in qa evaluations. Our idea is simple. In most qa tasks (e.g., Jeop-

ardy!), each question tests a single level of knowledge; in our task (the trivia game

Quizbowl), we test multiple levels of knowledge with each question. Since each ques-

tion tests multiple levels of knowledge, this decreases the likelihood that we learn

nothing about the difference between two models (i.e., they are both correct or both



wrong), which substantially increases discriminative power.

Despite the improved format, we next show that while our qa models defeat

accomplished trivia players, that they are overly reliant on brittle pattern matching,

which indicates a failure to intelligently answer questions. To mitigate this prob-

lem, we introduce a new framework for building evaluation data where humans and

machines cooperatively craft trivia questions that are difficult to answer through

clever pattern matching tricks alone—while being no harder for humans.

We conclude by sketching a broader vision for qa evaluation that combines the

three components of evaluation we improve—scoring, format, and data—to create

living evaluations and re-imagine the role of leaderboards.
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Chapter 1: Introduction

1.1 Overview

Asking questions—as in education and trivia games—is a powerful means of
both learning and testing for understanding. The ability to ask questions combines
aspects of intelligence unique to humans: language understanding, knowledge rep-
resentation, and reasoning. Thus, building systems capable of intelligent question
answering (qa) is a grand goal of natural language processing (nlp).

Humans primarily ask or answer questions for one of two purposes: to learn
new information or to test the understanding of the answerer. These two purposes
are the foundations of two (mostly) dichotomous, dual, and dueling perspectives in
the evaluation of machine qa: the Cranfield paradigm (§2.1.1) and the Manchester
paradigm (§2.1.2). In the Cranfield paradigm (Voorhees, 2002b), satisfying the user
of a machine qa system is the central goal, regardless of how that is achieved. In con-
trast, the Manchester paradigm (Winograd, 1972; Levesque et al., 2011) emphasizes
that evaluations should specifically test for intelligent behavior like its progenitor,
the Turing Test (Turing, 1950). Although the choice of goal is rarely explicitly
stated, that choice deeply shapes qa evaluations. This thesis begins by exploring
how this choice influences evaluation and then turns to improving qa evaluations
that test for intelligent behavior.

In qa, the dominant evaluation approach collects a large set of questions, pairs
questions with correct answers, and automatically scores machine responses against
reference answers (Voorhees, 2000b). The Cranfield experiments (Cleverdon, 1967)
laid the foundation for modern information retrieval (ir) research by demonstrating
that systems scoring higher on automatic evaluations corresponds to systems with
higher user satisfaction. Consequently, the critical link in information-seeking sce-
narios is to ensure that reference answers satisfy users. This evaluation approach
evolved to include comparisons to human effectiveness (Najberg, 2018) and was aug-
mented by the construction of qa datasets with hundreds of thousands of questions.

When combined with machine learning and eventually deep learning, this led
to feats like ibm Watson’s 2011 Jeopardy! victory over multi-time champions Brad
Rutter and Ken Jennings (Ferrucci et al., 2010). However, an abundance of evidence
has shown that while we can build “systems with very impressive performance, that
[they] are nonetheless idiot-savants” (Levesque, 2014). In essence, the fact that one
correctly answers “who discovered Hawking radiation?” does not necessarily imply
intelligent qa.1 The crucial oversight is that the same approach taken to evaluate

1For example, answering with the person whose Wikipedia entry has the highest word overlap

1



U: <assistant wake-word>, tell me about Tahiti.
A: It’s the largest island in French Polynesia, near the center of the Pacific
U: What is its history with France?

Figure 1.1: An example of information-seeking dialog that the Curiosity dataset
aims to support. Assistants should answer user questions and convey information
that inspires meaningful followup questions.

user satisfaction cannot be used to draw conclusions about intelligent behavior,
because they have fundamentally different—although not unrelated—goals. Just as
teachers ask questions to test student comprehension (Mehan, 1979), if our goal is to
quantify progress towards intelligent qa we should create tests that better test that.
A central idea throughout this thesis is improving discriminative power: the ability
to distinguish between better and worse systems. We improve the discriminative
power of qa benchmarks by introducing dynamic elements into their scoring, format,
and data. Combined, our methods improve qa benchmarks so that they better
measure progress towards intelligent qa.

1.2 Conversational Information-Seeking

We begin our exploration of the Cranfield paradigm in qa with perhaps the
most natural form of information-seeking: conversation (Solomon, 1997). Information-
seeking is naturally an interactive and iterative evolution of both the user’s infor-
mation need and the expression of that need (Belkin et al., 1995). As partners in
this information dance, machines should guide users toward resolving their infor-
mation need (Radlinski and Craswell, 2017), even if they may not know precisely
what they are looking for a priori (Raman et al., 2014). Towards the goal of satis-
fying information needs, the machine may be thought of as striving to be a clever
and helpful librarian who converses with humans to develop and address informa-
tion needs (Culpepper et al., 2018). Ultimately, the machine will be evaluated by
whether in the course of its dialog, it met the user’s information need.

Conversational information-seeking sits at a convergence point between ir
and nlp: ir researchers seek to make their systems more conversational while
nlp researchers seek to make dialog systems more informative (Gopalakrishnan
et al., 2019). Chapter 3 introduces a large resource for conversational information-
seeking—an area that until recently lacked large resources despite great interest (Dal-
ton et al., 2020). We introduce the Curiosity dataset (Figure 1.1) which has four
features that combined make it unique: (1) it is designed for asymmetric conversa-
tional information-seeking (i.e., user–assistant interaction), (2) each dialog message
is paired (possibly) with supporting documents, (3) each message has explicit user
feedback, and (4) messages are annotated with dialog acts which are subsequently
used to infer implicit user feedback. We validate both forms of user feedback by

to the question.
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re-discovering a well-known principle in human learning: that novel information
should be rooted in pre-existing knowledge (Chaiklin, 2003). In the spirit of the
Cranfield paradigm, this work devises multiple ways to measure user satisfaction.
Having seen one way to evaluate answers to questions, we shift to evaluation under
the Manchester paradigm.

1.3 Questions are Not Equally Informative of Ability

A major goal of comparative evaluations is to reliably distinguish between
better and worse models. In nearly all qa evaluations, since examples are weighted
equally2 they are implicitly assumed to be equally helpful in discriminating between
models of disparate ability. However, this implicit foundational assumption is triv-
ially falsifiable: datasets have erroneous questions that should not be weighed the
same as good questions; even in a dataset free of errors, questions vary in their
capability to discriminate between the knowledge of two players. For example, if
the final sentence of Figure 1.2 were used to quiz world-class trivia players, it would
do a poor job of discriminating between the players since the clue is too easy; in
contrast, if only the first sentence was used, it would do a far better job. Similarly,
if we tested novice players, then the situation would be reversed: the more difficult
clue would likely not be answered by either player. Thus, the capability to infer skill
is dependent on both the true skill of players and the intrinsic difficulty of questions.

Thus, questions are not equally informative, and we should change our eval-
uations to account for this. This precise problem was first encountered during the
development of educational and psychological tests in the 1950s and 1960s (Traub,
1997). With respect to educational testing literature, current methods for qa eval-
uation (e.g., averaging scores) correspond to Classical Testing Theory (Edgeworth,
1888, ctt) which has largely been replaced by Item Response Theory (Lord et al.,
1968, irt) for the reasons discussed. Chapter 4 applies irt to the de facto standard
method for measuring progress in qa and many nlp tasks (Wang et al., 2019a)—the
leaderboard. We show that jointly modeling the abilities of models and the diffi-
culties of examples produces more reliable rankings by dynamically down-weighting
the importance of less discriminative questions. Just as importantly, the joint model
identifies poor test questions and efficiently guides annotation efforts which we in-
corporate in our discussion of future work (Chapter 7). Next, instead of increasing
discriminative power through dynamic scoring, we do so with an intrinsically more
discriminative qa format.

1.4 Incremental QA for Polytomous Evaluation of Knowledge

Trivia games are a popular means of testing knowledge and qa ability in
humans and machines alike. This thesis considers two types of tests: dichotomous
evaluations where answers are entirely correct or wrong, and polytomous evaluations
where partial credit is given (e.g., one point out of five). Like most qa evaluations,

2Most evaluations average scores, which implicitly assigns equal weight to each individual score.
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One part of this program included Stuart Roosa carrying redwood seeds. A
part of this program failed in its mission to reach 7 Fra Mauro, and the final
part of this program brought geologist Harrison Schmitt � to the Taurus-
Littrow site. There was no second or third (*) mission in the commonly used
numerical sequence for this program, which began with a mission that, in
a test, killed Roger Chaffee, Ed White, and Gus Grissom in a 7 fire. James
Lovell was the hero 4 of another failed mission in this program. Saturn
4 V rockets were used to propel modules into space 4 in, for 10 points,
what 4 NASA program whose eleventh mission landed Neil Armstrong on
the moon?
Answer: Apollo Program

Figure 1.2: qb questions are multi-sentence and reference uniquely identifiable
answers (e.g., the Apollo Program). They begin with difficult clues and steadily
progress to easy “giveaway” clues by the last sentence. In this question, the early
clues are unknown to most while the final clue is known to most school-aged chil-
dren. Here we show human gameplay data where players answered incorrectly (7)
and correctly (4). Having above-average knowledge of this topic, my (correct) guess
is shown by a �.

the trivia game Jeopardy! dichotomously tests the knowledge of participants: only
one player is awarded points, and players are only tested at a single point—the end of
the question. As a consequence, when multiple players know the answer, Jeopardy!
can be characterized as “kind of. . . a crappy video game where it’s, like, light goes
on, press button—that’s it” (Malone, 2019). Thus, even if players have differing
knowledge of question’s topic, they often have no way to display their expertise
aside from impressively quick (jedi) reflexes (Harris, 2006).3 Putting the buzzer
aside, the problem is that the only outcome which distinguishes between players
of different ability is when one answers correctly and other answers incorrectly. In
all other cases, we have no information about which player knows more. If we aim
to distinguish between differing levels of qa ability, then dichotomous tests are an
inefficient means of doing so. Chapter 5 addresses this oversight while simultaneously
incorporating two mechanisms that bring it in line with the Manchester paradigm.

For this task, we turn to Quizbowl (qb)—a decades-old trivia game still
played annually by over fifty thousand students across the world (National Academic
Quiz Tournaments, 2020). In qb, each question tests knowledge incrementally by
checking for knowledge of difficult clues first and easier clues last. This property
of questions—called pyramidality—is implemented by creating multi-sentence ques-
tions where each subsequent sentence contains clues easier than previous ones (Fig-
ure 1.2). As in Jeopardy!, there is also a buzzer, but with one critical difference:
it can be used at any point instead of only after the full question has been shown.

3In the Watson match, the reflexes of mere mortals could not match a computer’s, contributing
to their demise.
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In effect, qb is a polytomous evaluation4 with points deducted for every additional
word needed to answer. This design combined with the pyramidality of qb ques-
tions makes it easier to distinguish between novices, dilettantes, weekend warriors,
and goats.5

After introducing qb, Chapter 5 builds a framework that uses the trivia game
in a Manchester-style qa evaluation. Specifically, we argue that evaluation for the
purpose of evaluating intelligent behavior is improved by the pyramidality of ques-
tions, implicitly requiring models to “know what you don’t know”, and a metric
that requires stability in guesses. To test this approach, we create a (deep-learning
based) computer system for playing qb where one sub-system provides candidate
answers while another decides when to buzz with that answer. We put this sys-
tem (and our evaluation) to the test through a multi-year set of exhibition matches
against accomplished trivia players; as in Jeopardy!, our system defeats even the
most accomplished players despite using only statistical pattern matching. Upon
closer inspection, although the format of qb is an improvement over prior qa eval-
uations, properties of the data still makes it easy for clever—yet cheap—statistical
tricks to win the day.

1.5 Crafting Robust Questions Through Cooperative Machine-Human
Authoring

Although answering a question to the satisfaction of a user may be sufficient
in the Cranfield paradigm, if that question was answered through flawed reasoning
then in the Manchester paradigm the test taker is not displaying intelligent be-
havior and should fail the test. For example, answering “who discovered Hawking
radiation?” with Stephen Hawking on the basis of word co-occurrence statistics on
Wikipedia is not sound; similarly answering Figure 1.2’s question on the basis that
the answer to any question with the phrase “in this program” is the Apollo Program
is also flawed and not how humans answer questions. The challenge then is “can [we]
find questions where cheap tricks like this will not be sufficient to produce the de-
sired behavior?” (Levesque, 2014). Levesque proposes three ways to make questions
(more) robust to these tricks: make questions “Google-proof, . . . avoid questions
with common patterns, . . . [and] watch for unintended bias” like word order betray-
ing the answer. While following these recommendations is no panacea, following
them increases the likelihood that a machine that correctly answers these questions
is doing so through intelligent means.

In Chapter 6, we are the first to show that the same machines that used these
tricks to best accomplished qb answers are also useful for helping humans to find
and eliminate these shortcuts. At first, it may seem paradoxical that the “idiot-
savant” models are useful for making questions more robust tests of intelligent qa.
However, if we know—a priori—that a model explicitly uses pattern matching to

4Dichotomous responses are either correct or wrong; polytomous responses allow for partial
credit.

5goat: the Greatest of All Time.
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answer, then we can use it to make it more difficult for pattern matching alone to
derive the correct answer. Concretely, Chapter 6 designs an interface where humans
and machines cooperatively and iteratively craft questions together: the machine
identifies key phrases that are statistically predictive of the answer while the human
creatively rephrases them. The output of this human–machine collaboration is a
new set of questions that—by construction—are more difficult to answer through
naive pattern matching alone and therefore if solved are more likely to indicate that
the answer was derived through intelligent means.

1.6 Roadmap

In this thesis, we create methods that improve the format, data, and scoring
frameworks in qa evaluations. Prior to discussing our methods, we first identify the
Cranfield and Manchester paradigms as two influential perspectives in qa evalua-
tions and show how they affect the form and data of evaluations (Chapter 2). In
the subsequent chapter, as an example of the Cranfield paradigm, we introduce the
Curiosity dataset along with a new idea for dialog qa evaluation (Chapter 3). From
here, we turn to Manchester paradigm evaluation and begin by showing how lessons
from educational testing can help us dynamically change the influence of individual
examples (Chapter 4). Where the prior chapter held the format and data static,
Chapter 5 changes the qa format to one that is intrinsically more discriminative.
We use this same qa format in Chapter 6 to introduce a framework for cooperative
human–computer question authorship that results in more robust evaluation data.
Finally, Chapter 7 takes stock of the current state of qa evaluation and builds a
broader vision that combines the ideas of this thesis.
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Chapter 2: Background

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

Alan M. Turing, 1950

This chapter provides background in the epistemological heritage of question
answering research (§2.1) and datasets (§2.3), and modern methods for question
answering (§2.4). In discussing qa’s heritage, we more precisely define the origin
and definition of the Cranfield and Manchester paradigms. Afterward, we compare
several common qa formats. Using this new vocabulary, we analyze and categorize
qa datasets by their purpose, how they were created, and other attributes which will
help contextualize our dataset contributions in Chapters 3, 5, and 6. Following this,
we describe modern (neural) methods for qa that we use throughout this thesis.

2.1 The Epistemological Heritage of Question Answering

Although machine qa is a comparatively young area of study, reviewing its
history is helpful for understanding where the field has been, where it is going, and
how to avoid repeating mistakes. In this section, we first compare the Cranfield
paradigm (§2.1.1) and Manchester paradigm (§2.1.2) which are each motivated by
related yet independent goals. The Cranfield paradigm is driven by the “goal of
[information retrieval] research [which] is to improve access to information” (Croft,
2019). From this perspective, qa is another way to satisfy human information
needs. The Manchester paradigm’s goal is to create qa systems that exhibit intel-
ligent behavior. Neither is inherently better, but regardless the choice shapes the
type of systems built. Far before the rise of big data, the exponential growth of
computational resources, and deep learning, Schwitter et al. (2000) argue that:

There is general agreement that these competitive evaluations had a
striking and beneficial effect on the performance of the various systems
tested over the years. However, it is also recognized (albeit less generally)
that these evaluation experiments also had the,[sic] less beneficial,[sic]
effect that the participating systems focussed increasingly more narrowly
on those few parameters that were measured in the evaluation, to the
detriment of more general properties.

Arguably, this phenomenon has repeated itself (Dotan and Milli, 2020) with deep
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learning, and it is only recently that other goals like robustness, fairness, or efficiency
have been given attention (Paullada et al., 2020). Thus, we begin our review with
the Cranfield paradigm, which paved the way for using large-scale static evaluations
as a proxy for user satisfaction.

2.1.1 The Cranfield Paradigm
In information retrieval, the main task is to use a user’s stated information

need (query) to select relevant information (documents) to show them. The most
natural method to evaluate ir systems then would be to simply ask the user if
the returned documents satisfy their information need. However, much like anno-
tation in nlp this is expensive and time-consuming, so Cleverdon (1967) propose
an alternative in the Cranfield experiments.1 Rather than have users interact with
systems, test collections are built, and all systems are evaluated on this collection.
The collection has four parts: (1) a representative list of user queries, (2) a large set
of documents, (3) per-query relevance judgments indicating which documents were
relevant to each query, and (4) a means to aggregate per-query scores. Instead of
putting humans in the loop with ir systems, “in the Cranfield paradigm, researchers
perform experiments on test collections to compare the relative effectiveness of dif-
ferent retrieval approaches” (Voorhees, 2002b).

The Cranfield paradigm makes three key assumptions: the relevance of one
document is independent of all the others, a single set of judgments is representative
of the user population, and all relevant documents are annotated (Voorhees, 2019).
At first glance, it would seem to be that every assumption is violated with real users:
they do not like repeated information, users may differ in judging relevance, and it
is infeasible to annotate every query-document pair unless the document collection
is small (Cleverdon, 1991). Indeed, in the time of the Cranfield experiments these
arguments made test collections seem like a radical proposal (Taube, 1965).2 Despite
this, part of the success of the Cranfield paradigm and subsequently trec’s success
is attributable to great care in aligning the core task with the evaluation (Jones,
2001); for example, repeated information does not matter if the user only requires
at least one relevant document.

As ir systems became more effective at retrieving documents to sort queries,
researchers started working on extensions that returned short answers instead of
whole documents (Sanderson and Croft, 2012). Despite the change in output for-
mat, the core goal mirrors that of ir: return relevant information—in the form
of a short answer—to the user. For example, in the first large-scale evaluation of
domain-independent qa systems (trec-8) “human assessors read each string and
made a binary decision as to whether the string actually did contain an answer to
the question” (Voorhees, 2000b). With this history lesson in mind, it should be
clear by now that although this is a reasonable means to evaluate how effective a

1The Cranfield experiments and thus the Cranfield paradigm are named after where they were
conducted: Cranfield University in Cranfield, Bedfordshire, United Kingdom.

2This was in part due to its controversial but ultimately correct finding that word-based indexing
of documents was effective.
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qa system is for users, there is (rightfully) no focus on evaluating whether the sys-
tem is behaving intelligently. Despite this, system effectiveness on qa benchmarks
have been repeatedly used to claim super-human—and presumably “intelligent”—
capabilities (Najberg, 2018). Next, we formalize an alternate paradigm that better
aligns with the goal of testing for intelligent behavior than the Cranfield paradigm.

2.1.2 The Manchester Paradigm
The Manchester paradigm is an intellectual descendant of the Turing Test (Tur-

ing, 1950). Just as the Cranfield paradigm is named for Cranfield University, we
name the Manchester paradigm after where Alan Turing created the Turing Test:
the University of Manchester. Rather than consider the ill-defined question of “can
machines think?” Turing proposed that we instead consider the imitation game: a
test of whether a machine could fool an interrogator into thinking it was a human.

The eliza (Weizenbaum, 1966) dialog system is the first well known, qa-
like system to have “passed” a weak form of the Turing Test; related systems like
parry (Colby, 1981) eventually followed. eliza was intentionally built to “dazzle
even the most experienced observer” while still being a “mere collection of proce-
dures.”3 Consequently, the lesson from eliza is that “we often read into a program’s
behavior our own ideas of what it understands” (Winograd, 1977) which is some-
times referred to naive psychology (Watt, 1996); Caporael (1986) also point out this
anthropomorphization of machines. In the paper describing eliza, Weizenbaum
makes the point that there are limits to eliza’s “understanding,” since a crucial
component of understanding “is not the subject’s ability to continue a conversation,
but to draw valid conclusions from what is being told.”

We posit that Terry Winograd’s shrdlu qa system (Winograd, 1971) is a
response to this criticism. Winograd viewed shrdlu as a “system [that] attempts
to integrate all the aspects of language, in combining linguistic knowledge with a
command of the world being discussed” (Winograd, 1977). This system builds an
internal model of a toy block world that is manipulated through natural language;
in this way, shrdlu draws valid conclusions about the toy block world. In a similar
spirit, a core goal of the Manchester paradigm is to test—through a natural language
interface—if qa systems can manipulate a model of the real world to derive correct
answers.

There is, however, a crucial difference in the feasibility of testing for user
satisfaction in the Cranfield paradigm and testing for intelligent behavior in the
Manchester paradigm. Namely, the main challenge that the Cranfield paradigm
addresses is one of cost: it is simply not practical to evaluate every new system
with humans. In contrast, the Manchester paradigm must contend with the reason
for the Turing Test in the first place: that we do not know how to define whether

3Other early qa systems included baseball which manipulated a knowledge based of foot-
ball games through natural language (Green et al., 1961) which inspired later work in querying
databases (Copestake and Jones, 1990), lunar which helped Apollo Program scientists find spe-
cific Moon samples matching certain traits (Woods, 1972), and student that solved simple word
algebra problems by parsing numerical expressions (Bobrow, 1964).
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a system is intelligent, in large part because defining intelligence is at minimum
exceptionally challenging.

Computer scientists like Turing were not the first to struggle with defining,
understanding, and measuring intelligence: this is a long-standing challenge in fields
like psychology. While the nature of intelligence is highly contested, prominent
theories include the g factor theory which postulates that there is a single underlying
general intelligence (Spearman, 1904), theories that postulate multiple independent
axes of intelligence such as primary mental abilities (Thurstone, 1973) or multiple
intelligences (Gardner, 2011, p. 277),4 and a triarchic theory based on the idea
that human intelligence is a combination of componential, experiential and practical
components such as “mental activity directed toward purposive adaptation to, and
selection and shaping of, real-world environments relevant to one’s life” (Sternberg,
1985). Of these, the g factory theory took strongest hold and was arguably central
in the creation of psychometrics: a field studying the measurement of intelligence
in humans (Section 2.6).

While we will not opine as to which theory is correct,5 it is not necessary
to do so to discuss why Sternberg’s triarchic theory best lights the way when cre-
ating evaluations of machine intelligence.6 At its core, the g factor theory posits
that manifestations of intelligence—such as demonstrating mathematical or spa-
tial reasoning—emerge from a general mental ability (the g factor). The validity
of measuring the g factor (i.e., iq) in humans is questionable (Section 2.6),7 and
makes even less sense for machines: every system discussed thus far—by construc-
tion (e.g., eliza)—does not have an underlying “intelligent” core. While modern
statistical learning methods have certainly pushed state-of-the-art, they do little to
change this state of affairs (Bender and Koller, 2020). Thus, at best, approach-
ing the evaluation of machine intelligence from this perspective implies measuring
a quantity (g factor) that we know does not exist in machines built with current
technology.

Another family of intelligence theories—such as primary mental abilities or
multiple intelligences—posit that intelligence is the combination of several abilities
such as numerical, reasoning, musical, and bodily-kinesthetic ability. While these
abilities map onto machines with varying degrees of success (e.g., bodily-kinesthetic
ability is irrelevant to most qa systems), these theories are nonethless helpful for
creating a taxonomy of general skills that we should endeavor to make machines
capable of. For example, developing machines capable of numerical ability and test-
ing for that ability is tractable and an example of what we have referred to in this
thesis as an intelligent behavior. However, theories of multiple intelligences still
leave much on the table. These theories take a narrower skill-based view that omits

4Gardner’s multiple intelligences can be understood as multiple independent abilities like lin-
guistic or numerical reasoning.

5This is an empirical question which we do not investigate in this thesis.
6Furthermore, the nature of human intelligence may be different from artificial general intelli-

gence (provided of course that agi is achievable).
7Although multiple studies have demonstrated correlation of iq test results with positive out-

comes like job success, as the old adage goes, correlation is not necessarily causation.
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several aspects of intelligence included in the triarchic theory such as creativity (e.g.,
composing novel questions as in Chapter 6), generalization from experience (e.g.,
few-shot learning as in Section 5.10.1), adapting and influencing environments (e.g.,
reinforcement learning), and the ability to learn efficiently. While developing ma-
chines capable of achieving particular skills—such as reasoning from known facts—is
of definite interest in nlp, this broader view covers these skills8 while describing ad-
ditional aspects of intelligence that are already of active scientific interest in nlp,
machine learning, and ai.

In this spirit, an alternative interpretation of the Turing Test is that it is “not
asking whether all digital computers would do well in the game nor whether the
computers at present available would do well, but whether there are imaginable
computers which would do well” (Turing, 1950). One way to build towards this
goal is to iteratively imagine tasks that a machine should be able to do at least
as well as a human, prototyping a machine ostensibly capable of that task, and
then testing for that capability. Likewise, we can iteratively imagine aspects of
intelligence—such as sample-efficient learning or generalization to novel contexts—
that humans regularly exhibit, develop ways to build those in machines, and measure
our progress. In this thesis, we refer to both of these manifestations of intelligence as
intelligent behaviors. Towards the goal of building machines exhibiting increasingly
many intelligent behaviors, descriptive theories and definitions of intelligence are
helpful for identifying intelligent behaviors that we can work towards developing in
machines.

In testing for capabilities, we introduce the second element of Manchester
paradigm: we seek not to prove that a machine has a capability representative of a
specific intelligent behavior, but to know when it does not so we can work towards
building that capability. Through this mechanism, the Turing Test “represents what
it is that ai must endeavor eventually to accomplish scientifically” (Harnad, 1992).
For example, one intelligent behavior humans exhibition is being able to answer
a question regardless of how it is phrased (Chapter 6). The challenge however
comes in testing for this: we cannot tractably test all possible rephrasings. Theory
also suggests this intractability: if the imitator model and interrogator are Turing
Machines (Turing, 1937), then determining whether the imitator is a machine is
undecidable (Sato and Ikegami, 2004). Thus, we avoid positively proving ability
or passing the Turing Test since it is likely impossible. A wider view of this point
partially explains the “moving goalposts” phenomenon in ai research where once a
grand challenge is solved—like Chess (hsiung Hsu et al., 1995) or Go (Silver et al.,
2016)—it is no longer considered “ai.” Instead, under the Manchester paradigm,
the process of creating tests, improving tests, and improving models based on test
failures guides research.

The best and most famous example of the Manchester paradigm is the Wino-
grad schema challenge (Levesque et al., 2011). In this qa task, machines answer
specially crafted questions with binary answers (Figure 2.1). Examples in the Wino-
grad schema challenge always mention two parties (noun phrases), one is referred

8These academically-oriented skills reside in the componential analytical subtheory.
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Questions Answer
The trophy would not fit in the brown suitcase
because it was too big.
What was too big? trophy/suitcase
The trophy would not fit in the brown suitcase
because it was too small.
What was too small? trophy/suitcase

Figure 2.1: The Winograd Schema Challenge (Levesque et al., 2011) examples have
two main ingredients. First, a statement containing two noun phrases and a pronoun
which could refer to either (“trophy,” “suitcase,” and “it” in this example). Second, a
single trigger word that when changed between two alternatives (“big” and “small”)
changes which noun phrase the pronoun should resolve to. Well-crafted examples
should expose models that do not “understand” text.

to by a pronoun or possessive adjective, the question involves determining the re-
ferred noun party, and crucially there is a special word that when replaced by an
alternative, flips the answer. Should a machine fail to answer questions like this, we
conclude it is not displaying intelligent behavior and is thus not intelligent in at least
the same way humans are. The opposite is not necessarily true though, since we
only test for a single case and would further need to make the logical inference that
the Turing Test tries to avoid: to define intelligence itself as displaying a specific list
of intelligent behaviors. The key feature of the Winograd schema challenge, its suc-
cessor the Winogrande challenge (Sakaguchi et al., 2020), and Manchester paradigm
qa evaluation is to identify specific intelligent behaviors that the evaluation should
test for.

This distinction of paradigms is a generalization of a point made by Gard-
ner et al. (2020b)—that the three broad motivations for qa are to (1) fill human
information needs, (2) probe a system’s understanding of some context (Weston
et al., 2016), and (3) to transfer learned parameters.9 Specifically, filling human in-
formation needs aligns with the Cranfield paradigm and the Manchester paradigm
generalizes the idea of probing a system’s understanding of a context to the idea of
testing for intelligent behavior which may not necessarily require explicit context at
all.10 While we have introduced these as opposing paradigms by contrasting their
main goals, there is a wide swath of research that advances the goals of both.

2.1.3 Common Ground
Although we present these paradigms as a dichotomy, the world is not black

and white, and progress is often shared through common sub-goals. Making models
9Parameter transfer is based on the idea that if the end task follows a qa format, that training

on qa-like data may be helpful even if the task itself is not qa.
10For example, answering many semantically equivalent phrasings of the same question.
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more robust is—to an extent—one of these areas of overlap. For example, Microsoft
Research and Bing created the Web Scale Speller Challenge in 2011 (Wang and
Pedersen, 2011) to motivate research in making search engines more robust through
better handling of spelling errors. In concurrence with the Cranfield paradigm, mak-
ing search engines robust to mis-spellings ultimately helps users find information
faster. From the Manchester paradigm perspective, humans demonstrate an im-
pressive robustness to poor spelling, albeit at speed penalty (Rayner et al., 2006),11

so expecting this of machines is quite reasonable. Along similar lines, Contrast
Sets (Gardner et al., 2020a) test robustness to syntactic variants of the original
questions in multiple datasets. However, there is a limit to this: when robustness
works towards the goals of one paradigm, but against the other.

Suppose a user wanted to find a particular email, but only could recall a men-
tioned word that is otherwise unrelated to the email’s contents. In the abstract,
what we really ask is whether we should allow a system to use information that
although helpful in solving the task, is not related to any conventional sense of nat-
ural language understanding or reasoning. The Cranfield paradigm would certainly
welcome this information; in contrast, the Manchester paradigm would reject this
usage as one of a larger class of correlations that models should not rely on (Feng
et al., 2018). Beyond robustness, these paradigms share interests in areas like few-
shot and zero-shot qa: responding to infrequently asked questions is important in
practice (Baeza-Yates et al., 2007), and building models that learn more from less
certainly qualifies as intelligent behavior (Linzen, 2020). Next, we introduce com-
mon qa formats and use this as a means to survey of qa and reading comprehension
(rc) datasets.

2.2 Question Answering Dataset Characteristics

In addition to a qa dataset’s goals, they are also characterized by the qa
format (§2.2.1), how questions are created (§2.2.3), and the context that they assume
(§2.2.2). Questions based on specific text passages (e.g., from Wikipedia) will be
different from questions that you might ask a digital assistant or search engine;
likewise, the form of the answer also influences the data (e.g., multiple-choice versus
free response). Ultimately, each of these factors changes the data distribution and
the types of models built for the task.

11Davis (2003) summarizes human robustness by saying that: Aoccdrnig to a rscheearch at
Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef,
but the wrod as a wlohe.
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2.2.1 Answer Formats
All qa formats share three components: the question, an implicit or explicit

context, and a desired answer.12 We begin by first looking at the forms that answers
take.

Although it may seem easy to check the correctness of answers, this is a major
challenge in qa and practitioners frequently realize upon inspecting the data that
“there is no such thing as a question with an obvious answer.” (Voorhees and Tice,
2000). Along similar lines, the creators of NaturalQuestions—a qa dataset derived
from Google search queries—estimate that one third of (short) answers to questions
are “debatable” (Kwiatkowski et al., 2019).13 In the early days of large-scale qa
evaluation with trec (Voorhees, 2000b), human annotators graded each system’s
answers, but this was ultimately not feasible as the numbers of questions and systems
grew. Much like in ir, qa moved to (mostly) automatic methods to evaluate answers
from qa systems.

Free Response Although free response is conceptually the simplest and relatively
straightforward for humans to evaluate, it is the most challenging format to auto-
matically grade. For example, is “Turing” a good enough answer to “who proposed
the imitation game?” compared to “Alan Mathison Turing?” Would this be changed
if instead of a uniquely identifying name like Turing, the answer were a much more
common name like “Pedro Rodriguez” which could refer to no less than nine famous
athletes, several in the same sports? One approach taken by the Bing-based qa
dataset ms-marco (Nguyen et al., 2016) is to compute textual overlap between
reference answers and proposed answers with bleu-1 (Papineni et al., 2002) and
rouge-l (Lin, 2004). Unfortunately, these metrics often have unimpressive corre-
lation to human judgements (Callison-Burch et al., 2006; Chen et al., 2019) as in
SemEval-2018 Task 11 (Ostermann et al., 2018), especially when single word differ-
ences have significant effects on correctness (Yang et al., 2018a).14 While evaluating
free response answers remains challenging, the expressiveness of the format contin-
ues to encourage the improvement of scoring metrics through the use of learned
metrics (Nema and Khapra, 2018; Chen et al., 2020).

Span Selection One step back from free-response, is answering questions using
text spans from documents. The first large-scale examples of this evaluation format
are trec-qa-8 (Voorhees, 2000b) and trec-qa-9 (Voorhees, 2000a). In this task
(Figure 2.2),15 systems answer questions with spans of text from a document in a

12In this case, “answer” is more accurately described as a desired response, whether it be multiple
answers or abstention.

13They define correct (but debatable) as: “a reasonable person could be satisfied by the answer;
however, a reasonable person could raise a reasonable doubt about the answer.”

14Answers like “the radiation of wireless routers has [an/no] impact on people” have high lexical
overlap despite being contradictory.

15As of writing, we have not lost contact, although that is expected in the 2020s or early 2030s.
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Question: When will the Voyagers lose contact with Earth?
Answer: about 2015 or 2020

Figure 2.2: A sample question from trec-8. Questions are contributed by partici-
pants or FAQFinder logs. Answers are text spans selected by nist annotators from
news articles.

Page: Southern California
Passage: To the east is the Colorado Desert and the Colorado River at the

border with Arizona, and the Mojave Desert at the border with the
state of Nevada. To the south is the Mexico–United States border.

Question 1: What is the name of the water body that is found to the east?
Answer 1: Colorado River

Question 2: What is the name of the desert on the border of Arizona?
Answer 2: Colorado Desert

Figure 2.3: In squad (Rajpurkar et al., 2016), annotators read a passage from
Wikipedia and write several questions. Answers to squad questions are text spans
such as “Colorado Desert.” Despite the qa in its name, squad is better thought of
as a rc dataset since questions are context-dependent.

pre-specified collection.16 This format was later adopted by both versions of the
Stanford qa dataset (Rajpurkar et al., 2016, 2018, squad) (Figure 2.3) with the
second iteration incorporating abstention as in trec 2001 (Voorhees, 2001). The
format has proved popular and is also used by NaturalQuestions (Figure 2.4) and
many others. Beyond having some of the lexical matching problems as free response
answers, the primary disadvantage of span selection is that qa models are limited
to using only text present in the provided documents.

Multiclass Classification Although free-response and span selection are flexible,
one drawback is that sometimes it is unclear which semantic concept is intended
(e.g., Francis Bacon the philosopher versus the artist). In human trivia games like
Jeopardy! or Quizbowl (Chapter 5), this is easily solved by prompting humans to
be more specific. The equivalent for machines is to answer from a large, but closed
set of answers, each of which refer to a distinct concept such as named entities.
By construction, answers to examples in WebQuestions (Berant et al., 2013) and
SimpleQuestions (Bordes et al., 2015) are named entities from knowledge bases like
Freebase (Bast et al., 2014). Classification is also the format we use in qb evaluation
since most answers correspond to Wikipedia page entities (§5.3.4). The primary
tradeoff of this evaluation scheme is that although answers are never ambiguous,
if the set of candidate answers does not encompass all possible answers, then the

16In trec-8, since the requirement that the document support the span was not originally stated,
nist allowed these “unsupported” answers, but adopted this requirement for trec-9.
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Page: Sun
Question: what stage of the star life cycle is the sun in

Long Answer: The Sun is about halfway through its main-sequence stage, during
which nuclear fusion reactions in its core fuse hydrogen into helium.
Each second, more than four million tonnes of matter . . .

Short Answer: about halfway through its main-sequence stage

Figure 2.4: Examples from nq (Kwiatkowski et al., 2019) use real user queries from
Google search and annotate them with long and short answers.

evaluation is less representative of true model effectiveness.

Multiple Choice The final common answer format is multiple-choice, much like
one might find on standardized education tests. This format is attractive from the
modeling perspective since answering from a small set of options is a more tractable
challenge. Along these lines, there are multiple-choice tasks for story (Richardson
et al., 2013, MCTest), science (Welbl et al., 2017; Mihaylov et al., 2018; Clark
et al., 2018), and commonsense reasoning (Talmor et al., 2019) questions. The
main drawback to multiple-choice though is that creating plausible false answers
is challenging and requires substantial conscious effort (Welbl et al., 2017; Talmor
et al., 2019) or frameworks like the Winograd schema challenge or templates of
understanding (Dunietz et al., 2020).

Abstention Another common feature of tasks since trec-qa 2001 (Voorhees,
2001) and qa4mre at clef (Peñas et al., 2013) is the possibility of a question having
no answer and penalties for wrong answers. Trecqa 2002 took this a step farther
and factored in the confidence scores instead of a simple binary decision (Voorhees,
2002a). The motivation behind this is that models should know what they do not
know (Rajpurkar et al., 2018); Quizbowl takes this even farther by requiring this
decision to be made many times per question, instead of only once. In other terms,
models should have calibrated estimates of their confidence (Kamath et al., 2020) to
help decide when there is legitimately no correct answer or when the model’s best
guess is wrong.

Having covered the most common forms that answers take,17 we next discuss
the information contexts used in various datasets before bringing everything together
to characterize common generative stories of qa datasets.

2.2.2 Information Context
We—as humans—draw on our knowledge and (sometimes) external sources

(e.g., webpages or books) to answer questions. Although these sources are varied,
when we evaluate qa models they are limited to the information in the training

17Although extensive, our list does not cover formats like lists of answers.
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data or passed in as input. Generally, the format of qa examples either assumes a
global context and passes only the question to the model, or it provides a specific
context—such as a paragraph—for the model to use.18

Global Context Examples of global context qa include tasks like Jeopardy! (Dunn
et al., 2017), Quizbowl, and ComplexWebQuestions (Talmor and Berant, 2018).
In these tasks, there is no provided context, and any knowledge can answer the
question. Thus, tasks based on search queries like early iterations of trec-qa,
ms-marco, and NaturalQuestions are all global context questions.19 Although fac-
toid qa is the most common type, some common sense reasoning tasks also fit this
description.

Local Context In contrast, other tasks require that models use a specific, local
context to answer the question. The most obvious examples of this are story-based
datasets that ask questions about what occurred in the story (context) to test read-
ing comprehension (Kočiský et al., 2018; Tafjord et al., 2019). This is also common
in factoid qa tasks like squad or drop (Dua et al., 2019) where (frequently) the
question requires a paragraph (context) for it to be answered unambiguously (e.g.,
in Figure 2.3). In either case, the differentiator is not whether a certain local context
is helpful in answering a question, but if it—in general—is required.

Another example of local context are conversational qa datasets which inten-
tionally make the dialog history important to answering questions. The earliest large
sequential qa dataset is Trecqa 2004 (Voorhees, 2004), but it has been followed up
on by many other likes coqa (Reddy et al., 2019), quac (Choi et al., 2018),20 and
the Curiosity dataset (Chapter 3).

2.2.3 Generative Story
Finally, having discussed the format and context of questions, we are prepared

to treat them as part of the generative process in creating a question. If we view the
creation of questions as sampling from a probability distribution, then specifying its
generative process is helpful in identifying latent factors and observed factors that
influence the types of questions asked. Although there are several latent factors
we could define, such as the difficulty of questions as we explore in Chapter 4, for
now we focus on observed factors. In particular, we model the data distribution of
questions as having three factors: the question, the context, and the answer.

Under this generative model, the defining aspect of the question distribution
is the choice of which factor is selected or sampled first. For example, if we se-
lect a context paragraph first, then the question will be influenced and perhaps

18Datasets also typically assume a particular temporal context (i.e., when it was created); an
assumption tested in trec-qa 2006 (Dang et al., 2006) with questions like “who is the president
of the U.S.” whose answer is temporally dependent.

19Although NaturalQuestions provides gold passages with answers, questions are created inde-
pendently of the document.

20Elgohary et al. (2019) create a de-contextualized version of quac called canard.

17



Wiki Page Paragraph Question

Answer

Stanford Question Answering Dataset (SQuAD)

Distribution of
Wikipedia Pages

Wiki Page

Figure 2.5: squad’s questions are influenced by the distribution of Wikipedia pages,
the set chosen to be part of squad, and the text of the question. We call this
generative process type context-first to emphasize that the context (paragraph in
this case) directly influences the question.

explicitly depend on that context; on the other hand, if the question is created first
(e.g., a search engine question) then it does not depend on any particular context.
Although the Cranfield and Manchester paradigms are a separate concept, identify-
ing the generative story is often helpful in identifying the core motivation of a qa
dataset. When the answer to a question is chosen first—such as a teacher writing
a test question—the task almost surely falls under the Manchester paradigm since
by construction it does not originate from a genuine information need. Next, we
describe these three generative stories for questions.

Context-First QA Context-first questions are created when (optionally) a topic
is selected, then a paragraph discussing the topic, and then a question is written
that uses the context. In every step along the way, there are multiple points of
influence—none of which are necessarily good or bad. As an example, lets consider
squad 1.0 (Rajpurkar et al., 2016) where questions are written based on paragraphs
from one of 490 Wikipedia pages (Figure 2.5).21 Cultural artifacts like Wikipedia—
which many qa datasets such as squad depend on—are reflective of society and
carry its biases (Reagle and Rhue, 2011); in Wikidata,which is partially derived from
Wikipedia, 77% of people entities are male which in turn influences who is asked
about.22 Similarly, while it is obvious that the question depends on the context, a
somewhat less predictable side effect is that questions are often lexically similar to
the context which makes them easier to answer through pattern matching (Sugawara
et al., 2018; Rondeau and Hazen, 2018). This exact effect was observed years earlier
in Trecqa-823 where questions “were often back-formulations of statements in the
documents, which made the questions somewhat unnatural and also made the task
easier since the target document contained most of the question words” (Voorhees,
2000a). In response, the next year’s track used search queries from Microsoft’s
Encarta and Excite instead which induces a different generative story. Aside from

21442 in the training set and 48 in the development set.
22We used the Wikidata query interface to derive this number.
23Track participants submitted their own questions and were evaluated on questions from other

participants.
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TREC-9, NaturalQuestions and MS Marco

Search Queries

Question Paragraph

Answer

Figure 2.6: In question-first qa, the question is created independently of any particu-
lar context (paragraph) or answer. This type of qa is most prevalent in information-
seeking tasks like web search.

Quizbowl and Jeopardy!

Distribution of
Wikipedia Pages

Wiki Page

Answer Question

Figure 2.7: Answer-first questions are created by first thinking of a desired answer
(or at least topic area), then crafting a question with that answer.

factoid qa, context-first qa is common in story or narrative qa questions that
frequently tests if models make specific inferences from the story.24

Question-First QA In this generative process, the question is the first compo-
nent created—datasets based on search query logs are an excellent example of this
process. In question-first qa, questions often emerge from an information need and
therefore presumably the answer—if there is one—is not known, so does not directly
influence the question. This would naturally include many of the Trecqa tasks, ms
marco, and NaturalQuestions. While some of these tasks provide supporting doc-
uments, their inclusion does not directly influence the questions themselves since
even questions with no answer are included. In these tasks, although providing a
question-derived context is common, it is not a necessary component.

24Consider an example from Dunietz et al. (2020): Why did the dog come inside? Because: (1)
it was raining outside, (2) dogs prefer not getting wet to getting wet, and (3) going outside while
it is raining would get you wet as opposed to going outside when it is not raining and being dry.
They propose to continue this questioning until the resulting facts are obviously true.
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Answer-First QA The final major category of generative stories is answer-first
qa where the answer is the first component conceived (Figure 2.7). In contrast with
question-first qa, the answer or at least the topic of the question is specified a priori.
This is most prevalent in trivia tasks like Jeopardy!, Quizbowl, and TriviaQA (Joshi
et al., 2017) where the question writer aims to test a subject’s understanding or
knowledge of a topic. One drawback of this approach—much as with context-first—
is that often the distribution of answers is heavily skewed (§5.7.2). Like question-
first, although datasets like TriviaQA also provide supporting documents, they again
do not directly influence the question like a priori specification of the answer does.
All this said, if the goal is to test knowledge of a particular answer or topic, answer-
first is the go-to format.

Human and Machine Authorship Although some datasets are entirely human-
written, machines increasingly play a larger role in dataset construction. Whether
a dataset is human-authored ( / ), machine-authored ( ), or authored by a com-
bination also affects the distribution of questions—Chapter 6 investigates how co-
operative human-machine authoring affects question difficulty. For example, babi
is generated from a set of templates and thus is entirely machine-authored (Weston
et al., 2016), WikiHop from a knowledge base by posing slot-filling as qa (Welbl
et al., 2018), and WikiReading from aligning WikiData properties to contexts au-
tomatically (Hewlett et al., 2016). While this automated approach makes it easy to
quickly generate many questions, they tend not to be as diverse as human-authored
examples. Still, these approaches show promise in testing for specific capabilities and
comparing to more naturally constructed datasets (Liu et al., 2021). SimpleQues-
tions (Bordes et al., 2015) and Complex WebQuestions (Talmor and Berant, 2018)
take a middle-of-the-road approach and automatically select what relationships a
question should ask about and then human annotators phrase them ( → / ). Un-
der this setup, an annotator might receive a knowledge graph triple like (Picard,
played by, Patrick Stewart) and write “who played Picard, the captain of the Enter-
prise?” In another model for human-machine authorship, humans write questions
and machines filter out questions that are too easy ( / → ) as in drop (Dua et al.,
2019) and quoref (Dasigi et al., 2019). Chapter 6 takes this a step farther and
interactively constructs questions ( ↔ / ) like subsequently done in dialog (Nie
et al., 2020), natural language inference (Nie et al., 2020), and the Winogrand chal-
lenge (Sakaguchi et al., 2020).

On the other end are questions authored entirely by humans, be it through
crowdsourcing ( ) or some other means ( ). This distinguishes tasks like Quizbowl
or Quasar-T (Dhingra et al., 2017) which are created by domain experts from crowd-
sourced tasks like squad, coqa (Reddy et al., 2019), and quac (Choi et al., 2018).
In the case of trivia games, writers have intrinsic motivations for crafting good ques-
tions, players are intrinsically motivated to play them well (von Ahn and Dabbish,
2008; Wang et al., 2013), and this generally results in higher quality data (Kuznetsov,
2006). This distinction can be important since oftentimes crowd-sourced datasets
are more vulnerable to effects from annotators (Geva et al., 2019). For example, data
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quality can suffer if compensation is not appropriate for the task (Fort et al., 2011;
Wang et al., 2013), if incentives are misaligned, or in the worst case both (Gneezy
and Rustichini, 2000). In our categorization of qa datasets, we include author-
ship information as well. While there are certainly other factors that influence the
distribution of questions in qa datasets, these are some of the most important.

Human-in-the-Loop Adversarial Examples Since the publication of the work
in Chapter 6, several new datasets across a variety of nlp tasks have used model-in-
the-loop methods to create more challenging datasets. Although it is presumed that
datasets like HotPotQA require multi-step reasoning, Min et al. (2019) show that
many do not require multi-step reasoning. Dua et al. (2019) and Dasigi et al. (2019)
take aim at this problem by not allowing crowd-workers to submit questions answer-
able by a strong baseline. These works and ours in Chapter 6 create single-round
adversarial questions, but the process can be generalized to multiple rounds. After
every round of data collection, models are re-trained on the original data plus the
adversarial data which makes future questions even more difficult. This procedure
has been done for reading comprehension (Bartolo et al., 2020), natural language
inference (Nie et al., 2020), and detecting abusive messages in dialog systems (Dinan
et al., 2019a). This human-in-the-loop method is one effective way to reduce lexical
artifacts in datasets which in turn forces the development of better models (Kaushik
et al., 2021). Dynabench (Kiela et al., 2021) draws these and other tasks together
into shared evaluation infrastructure that supports iterative adversarial collection.
For an extensive survey of these methods, we refer the reader to Wang et al. (2021).

2.3 Question Answering Datasets

A major contributor to the efficacy of recent qa systems is the vast improve-
ment in the availability of large-scale datasets. These datasets and corresponding
tasks are extremely diverse, but it is nevertheless helpful to categorize them—where
possible—by paradigm (§2.1), answer format (§2.2.1), information context (§2.2.2),
generative process (§2.2.3), and domain. With those datasets in mind, Table 2.1 cat-
egorizes the most frequently used qa datasets starting from 1999 to the present.25

For further reading, we refer the reader to a qa tutorial by Chen and Yih (2020) or
surveys by Cambazoglu et al. (2020) and Rogers et al. (2021).

Dataset Paradigm Author Area Citation

Deep Read Manchester Stories Hirschman et al. (1999)
trec-8 qa Cranfield News Voorhees (2000b)
trec-9 qa Cranfield Search Voorhees (2000a)
trec qa 2001 Cranfield Search Voorhees (2001)
trec qa 2002 Cranfield Search Voorhees (2002a)
trec qa 2003 Cranfield Search Voorhees (2003b)
trec qa 2004 Cranfield Search Voorhees (2004)
trec qa 2005 Cranfield Search Voorhees and Dang (2005)

25In this thesis, we use qa and reading comprehension interchangeably in reference to datasets.
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Dataset Paradigm Author Area Citation

trec qa 2006 Cranfield Search Dang et al. (2006)
trec qa 2007 Cranfield Search Dang et al. (2007)
qa4mre 2011-2013 Manchester Multiple Peñas et al. (2013)
MCTest Manchester Stories Richardson et al. (2013)
WebQuestions Cranfield + Search Berant et al. (2013)
CNN/Daily mail Manchester 26 News Hermann et al. (2015)
Simple Questions Manchester → Freebase Bordes et al. (2015)
Children’s Book Test Manchester Stories Hill et al. (2016)
babi Manchester Stories Weston et al. (2016)
squad 1.0 Manchester Wiki Rajpurkar et al. (2016)
WikiReading Manchester Wiki Hewlett et al. (2016)
ms-marco Cranfield Search Nguyen et al. (2016)
MovieQA Manchester Movies27 Tapaswi et al. (2016)
race Manchester Exams Lai et al. (2017)
triviaqa Manchester Trivia Joshi et al. (2017)
SearchQA Manchester Trivia Dunn et al. (2017)
Quasar-T Manchester Trivia Dhingra et al. (2017)
SciQ Manchester ↔ Science Welbl et al. (2017)
NewsQA Cranfield News Trischler et al. (2017)
cwq Manchester → 28 Wiki Talmor and Berant (2018)
NarrativeQA Manchester Stories Kočiský et al. (2018)
DuoRC Manchester Movies Saha et al. (2018)
MultiRC Manchester Multiple Khashabi et al. (2018)
HotpotQA Manchester Wiki Yang et al. (2018b)
squad 2.0 Manchester Wiki Rajpurkar et al. (2018)
QBLink Manchester Trivia Elgohary et al. (2018)
WikiHop29 Manchester Wiki Welbl et al. (2018)
OpenBookQA Manchester ↔ Science Mihaylov et al. (2018)
qasc Manchester → Science Khot et al. (2020)
drop Manchester ↔ Wiki Dua et al. (2019)
quoref Manchester ↔ Wiki Dasigi et al. (2019)
quac Cranfield Wiki Choi et al. (2018)
BoolQ Cranfield Search Clark et al. (2019)
eli-5 Cranfield Reddit Fan et al. (2019)
arc Manchester Science Clark et al. (2018)
Record Manchester → News Zhang et al. (2018b)
ropes Manchester Wiki/Sci Lin et al. (2019)
coqa Cranfield Multiple Reddy et al. (2019)
CosmosQA Manchester Narrative Huang et al. (2019)
Natural Questions Cranfield Search/Wiki Kwiatkowski et al. (2019)
Quizbowl Manchester Trivia Rodriguez et al. (2019)
Trickme Manchester ↔ Trivia Wallace et al. (2019b)
MCScript Manchester Commonsense Ostermann et al. (2018)
QuaRel Manchester ↔ Stories Tafjord et al. (2019)
CommonSenseQA Manchester ↔ Commonsense Talmor et al. (2019)
AmbigQA Cranfield Search Min et al. (2020)

26Although noun phrases to mask are created automatically, the source of questions—summary
bulletpoints—and the articles are human created.

27Multi-modal, pairs video and transcripts
28The original questions are automatically created and then paraphrased by humans.
29MedHop is a second dataset in this publication.
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Dataset Paradigm Author Area Citation

Curiosity Cranfield ↔ Geopolitical Rodriguez et al. (2020)
QuAIL Manchester Multiple Rogers et al. (2020a)

Table 2.1: The table categorizes datasets by the task’s paradigm, the Author
(human , machine , or a mix), and topic domain. To be categorized as human-
generated, it is not enough for the dataset to consist of naturally occurring text;
it must have questions that are authored by humans instead of being automat-
ically generated. → and → indicate human-generated questions that are
non-trivially checked or modified by a machine system. → and → indicate
machine-generated questions that are paraphrased by humans. ↔ and ↔
indicate question creation incorporates interactive human-machine cooperation.

2.4 Methods for Question Answering

This section reviews methods for qa answering, beginning with those from be-
fore the statistical machine learning era and proceeding to modern neural methods.

2.4.1 A Brief History of Symbolic Question Answering Models
Early qa work focused on building systems for narrower, more well-defined,

and thus tractable problem domains. Each of these systems developed means of
combining knowledge of syntax (grammar), semantics (the meaning of words), and
reasoning (ability to deduce and connect facts). baseball showed the ability to ma-
nipulate a knowledge-base of baseball games through natural language (Green et al.,
1961) which inspired later work in querying databases with natural language (Copes-
take and Jones, 1990). At a larger scale, lunar showed that querying information
in natural language—in this case, metadata about Moon mineral samples—was use-
ful to Apollo Program scientists (Woods, 1972). Other work like student solved
simple word algebra problems by parsing numerical expressions and reasoning about
relations between them (Bobrow, 1964). qa was also used to show that shrdlu
could manipulate objects in a simulated world (Winograd, 1971). Many other sim-
ilarly limited symbolic qa systems were developed, but research eventually shifted
to the statistical-based methods with the creation of the question answering track at
the Text Retrieval Conference (trec) in 1999. Using the Trecqa track, systems like
mulder (Kwok et al., 2001) showed that qa systems significantly reduced user ef-
fort when their information-need is satisfied by short answers. Contemporaneously,
systems like proverb (Keim et al., 1999) solved crossword problems by combining
multiple qa methods with a centralized probabilistic model the decides on the best
solution.
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2.4.2 Modern Methods for Question Answering
Modern qa systems use either classical methods, deep learning methods, or

combine both. The shared goal of both methods is to represent text numerically
in a way that can be used to process questions, retrieve relevant documents, and
compute an answer. Both families of methods represent text as numerical vectors,
but derive their representations differently. Generally, classical methods encode
text with a vector space model (Salton et al., 1975) while deep learning methods
use distributed word representations (Mikolov et al., 2013). In both cases, the
objective is to represent texts such that those that are semantically similar have
high similarity scores while those that are semantically different have low similarity
scores. This exploits the intuition that the answer to a question—such as “who was
the first woman to fly to space”—is more likely be located in a document that is
semantically similar to the question than not.

Vector space models compute semantic similarity by considering the overlap
between the words mentioned in documents. Intuitively, when terms in a question
overlap with terms in a document, it is more likely to contain useful information. The
most effective vector space model for qa-motivated ir are Term-Frequency Inverse
Document-Frequency tf-idf (Jones, 1972; Rajaraman and Ullman, 2011) methods
like bm25 (Robertson and Walker, 1994). The intuition behind these methods is
two-fold: (1) the number of occurrences of a term in a document is correlated with its
importance to the document, and (2) the prevalence of a term across all documents
is inversely correlated with its importance. In ir and qa, methods like tf-idf are
particularly effective because the words of interest like named entities are precisely
those up-weighted.

However, there are two disadvantages to this approach.30 First, although local
word order can be encoded by using n-grams instead of unigrams, longer-range
word order and thus longer range dependencies cannot be modeled with n-grams.31

The second disadvantage is that even with mitigations like stemming, the similarity
of related yet unmentioned terms—such as the semantic relevance of “astronaut”
to the prior question—is zero. These shortcomings motivated the development of
distributed word representations.

Distributed word representations aim to find representations of words such
that words mentioned in similar contexts have similar representations. For exam-
ple, “space” and “astronaut” should have representations that are mathematically
similar since they occur in similar contexts. Concretely, for a corpus comprised of
V unique words, each is represented as a row in a d × V -dimensional matrix Wt.
Conceptually, one might imagine that each of the d dimensions encodes semantic
aspects of each word like tense, plurality, or “spaciness” although none of these are
defined or guaranteed a priori.

Terms are considered more similar if their dot product is more positive and less
30Additionally, out-of-vocabulary issues are also amplified in qa due to the prevalence of named

entities.
31The number of unique n-grams O(|V |n) is exponential with respect to a vocabulary V , thus

the probability in natural text of any given n-gram exponentially decays with respect to n.
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similar otherwise. Since the numerical representations of words are not determined
a priori, they must be trained. For example, Word2Vec (Mikolov et al., 2013) or
glove (Pennington et al., 2014) are algorithms that create representations such that
words that appear in similar contexts have similar representations. Word similarity
can be extended to sentence similarity by aggregating word representations through
operations like summation, averaging, or maxout. There still remains at least two
drawbacks to distributed word representations: (1) during inference, word order
and more generally context still is not factored in (e.g., “apple” the fruit versus the
company is context-dependent), and (2) after training, these representations are not
further updated (fine-tuned) based on the target downstream task.

Order-aware neural networks address both these issues. These models begin by
representing the tokens w = [w(1), . . . , w(n)] with vector embeddings [v(1), . . . ,v(n)]
and then build context-aware representations [h(1), . . . ,h(n)] that the downstream
task uses. Section 2.4.3 describes several order-aware models for building these
representations. Pre-trained word embeddings are also a powerful mechanism for
transfer learning. Similarly, initializing order-aware models with parameters from
pre-trained neural language models (McCann et al., 2017; Peters et al., 2017, 2018;
Devlin et al., 2018) is an effective way to improve downstream tasks. Lastly, since
these models are fully differentiable, as long as the end task (or a suitable proxy)
is expressable by a loss function, the full model can be fine-tuned to the end task.
Although these models have some downsides like difficulty to train and computa-
tional cost, the improvements in metrics like accuracy and recall are well worth the
tradeoff.

Modern qa systems combine some or all of these textual representations to
find documents relevant to the question and to answer it. The most common,
general architecture for qa breaks the problem into two components: (1) an optional
document retrieval system to find passages relevant to the question, and (2) a system
that—possibly using the retrieved documents—derives a final answer. Answers can
take multiple forms like free-response, choosing from a closed set, multiple-choice,
and span selection. These answers are used along with an evaluation measure to
give the system feedback during training.

This architecture is advantageous for three reasons. First, it logically separates
two related but distinct problems: collecting documents likely to contain relevant
information to the question and reasoning about the contents to arrive at an an-
swer. This architectural inductive bias mimics one human approach to information-
seeking: we rapidly collect seemingly relevant documents (e.g., via Google search or
by asking a librarian) then read those documents more carefully to find the answer.
Thus, these sub-problems can be studied in isolation first and then composed and
improved together later. Second, this approach makes the qa tractable even when
there are millions or billions of documents. For both humans and machines, read-
ing a document with a specific question in mind is computationally expensive; doing
this process for every possible document is intractable and computationally wasteful
since only a small fraction of documents are relevant for any given question. By sep-
arating these problems, the document retrieval step can be designed to be scalable
and efficient through classical approaches like inverted indices (Zobel and Moffat,
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Captained by George Nares, the HMS Challenger lay the foundation of oceanography.

Captained by George Nares , HMSthe Challenger ...
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Figure 2.8: Deep averaging networks, recurrent neural networks (e.g., lstms and
grus), and transformer networks (e.g., bert) are common architectures in neural
nlp models. To produce text representations of a fixed size (i.e., not a sequence
of vectors), each architecture takes a different approach. Deep averaging networks
average word vectors and then pass the subsequent vector through one or more
feedforward layers; recurrent models often concatenate the last hidden state in each
direction; transformer networks usually have a special token associated with the
input’s general representation (in bert, the cls token).

2006) or efficient nearest neighbor search over numerical vector representations (Lee
et al., 2019). Third, this format fits a variety of tasks without additional work; qb
uses only step two,32 squad uses both steps, but the document is provided, and
Open Domain qa (Chen et al., 2017) uses both. Combined, these benefits have
made this two-step approach common for modern qa (Chen and Yih, 2020).

Next we describe specific neural methods for neural text representation (Sec-
tion 2.4.3), classical and differentiable document retrievers (Section 2.4.4), and neu-
ral answering models (Section 2.4.6).

2.4.3 Neural Text Encoders
This section reviews several common neural text encoding methods used in

ir and qa models. These encoders create question and document representations
that models then combine to derive an answer. At a high level, these methods aim
to represent text (questions, documents, or answers) so that semantically similar
concepts have similar encodings.

Given text t with tokens [w(1), . . . , w(n)], a text encoder should return a se-
quence of representations [h(1), . . . ,h(n)]—one for each token.33 For tasks where

32Finding relevant documents could aid prediction, but we do not provide human-approved
annotations.

33We use the term token embedding since it can combine the word and character embeddings
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predictions are not per-token (e.g., predicting the start of a span), encoders should
also define an aggregated representation h(∗). Despite compressing the meaning of
a text to a fixed-length vector, the aggregated representation still captures substan-
tial semantic information (Conneau et al., 2018). We assume that the per-token
representations, aggregate representation, or both are ultimately incorporated into
the model’s loss function which is then optimized via backpropagation and stochas-
tic gradient descent (Rumelhart et al., 1986; Goodfellow et al., 2016). Figure 2.8
shows several common text encoders in nlp: deep averaging networks, recurrent
architectures, and transformer architectures (§5.5.3).34

Word embeddings are the simplest approach where each word in a vocabulary
of size V is represented by a d-dimensional vector vi of trainable parameters. In ad-
dition to representing distinct terms, token embeddings can be replaced by character
embeddings (Kim et al., 2016a) or used in addition to them (Joulin et al., 2017).
While the parameters can be trained from scratch on the target task training data,
it is also common to pre-initialize them with weights from Word2Vec or glove and
then update these representations; this is particularly effective when there is scarce
training data for the target task.

Like “frozen” word embeddings, word sequences can be aggregated to h(∗)

through operations like average pooling

h(∗) =
1

n

n∑
i=1

v(i) (2.1)

and max pooling

h(∗) =
1

n

n
max
i=1

v(i) (2.2)

the word vectors. Alternatively, the word vectors v(1), . . . ,v(n) can be passed through
one or more feedforward layers

h0 =
1

n

n∑
i=1

v(i) (2.3)

hn = f(Wn−1 · hn−1 + bn−1) (2.4)

with parameters Wn, bn and a non-linearity f as in a deep averaging network (Iyyer
et al., 2015, dan). Although word embeddings alone and dans are unordered syn-
tactic representations, they are still effective for some qa and sentiment analysis
tasks where word order is less important and attractive in terms of speed and com-
putational budget.

Next, we consider other composition functions. Throughout this thesis, we
adopt the notation that given a sequence of tokens w = [w1, . . . , wn] and a compo-
sition function encoder,

encoder(i)(w) (2.5)

for a specific token.
34We do not cover convolutional architectures since they are less common for nlp.
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denotes the encoder’s output representation of word w(i) and

encoder(w) (2.6)

denotes the aggregated representation—as defined by the model. For example,
dan(w) = hn is the aggregated dan representation and lstm(i)(w) is an lstm’s
contextualized representation of the ith input token (§5.5.3). In bert-based mod-
els, we amend this slightly and will refer to the representation of the cls token as
bertcls(w).

The most common order-aware neural composition functions are simple recur-
rent networks (Rumelhart et al., 1986), long short-term memory networks (Hochre-
iter and Schmidhuber, 1997, lstm), gated recurrent networks (Cho et al., 2014b,
gru), and transformer networks (Vaswani et al., 2017). Recurrent representations
(rnns, lstms, and grus) represent sequences (in the first layer) sequentially: each
word’s representation is conditioned on all previous words. For tasks where repre-
sentation in both directions is important—such as text span selection—the opposite
direction can be modeled by concatenating the original representation with the rep-
resentation of the reversed sequence (bidirectional) (Schuster and Paliwal, 1997).
Additionally, these layers can be stacked on top of each other; empirically, lay-
ers deeper in the network have more abstract representations (Peters et al., 2018).
Transformer networks—especially large-pretrained language models like bert (De-
vlin et al., 2018)—are another powerful composition function. Unlike recurrent net-
works, these transformers are comprised of alternating attention and feedforward
layers, and as a consequence the representation of every word is (symmetrically)
conditioned on the representation of every word in the prior layer. While these
models can be challenging to train due to training dynamics, computation speed,
and memory consumption, they are the foundations of most state-of-the-art mod-
els in qa. For a survey of bert-related work see Rogers et al. (2020b). Next, we
describe how these text encoders are used to construct document retrievers and
question answering modules.

2.4.4 Document Retrieval
The first component of a two-stage qa system is the document retriever. The

responsibility of the document retrieval module is to return—from a corpus of doc-
uments D = {d1, . . . , dn}—a small list of nk documents Dk or even only one that is
highly relevant to a question q.

In qa systems, document retrievers play the role of librarians. It would be
infeasible for a librarian to carefully read every book in a library every time a patron
asked a question; instead, librarians categorize and index libraries so that they can
quickly provide general suggestions. The objective of these systems is to design a
document encoding Ed(di), a question encoding Eq(q), and scoring function f such
that a scalar score

si = f(eq(q),ed(di)) (2.7)
is correlated with labeled relevance judgments. For either a human or machine li-
brarian, the primary constraint in retrieving documents is the computational cost
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incurred for resolving a query q as the number of documents nd in the corpus grows.
In practice, document collections can include hundreds of thousands of news arti-
cles (Voorhees, 2000b), millions of Wikipedia pages, or billions of webpages (Crawl).
Thus, commonly used document retrievers first pre-index D and then at inference
time use that index to efficiently return a list of the nk documents with highest
scores si. Next, we describe the classical and neural approaches used to define the
encoders and scoring functions.

The predominant method for classical document retreival indexes documents
as bag-of-word (Jones, 1972) using a tf-idf (Rajaraman and Ullman, 2011) encoder
Etf−idf , stores them in an inverted index (Zobel and Moffat, 2006), and uses a bm25
scoring function fbm25. For qa, the terms valued by tf-idf are usually correlated
with judgements. In Chapters 5 and 6, we use bm25

∑
i

IDF (q(i))
g(q(i), D) · (k1 + 1)

g(q(i), D) + k1 · (1− b+ b · fieldLen
avgF ieldLen

)
(2.8)

IDF (q(i)) = ln(1 +
docCount− f(q(i)) + .5

g(q(i)) + .5
) (2.9)

scoring for document retrieval. The function g(qi, D) represents how many times
the token q(i) occurs in document D and g(q(i)) is the number of documents that
contain token q(i).35 Apache Lucene (Foundation) and ElasticSearch (Gormley and
Tong, 2015) are two industry-standard, user-friendly, and scalable implementations
of this document retriever. DrQA (Chen et al., 2017) show this approach is effective
for Open-domain qa and we show in Chapter 5 that it is a strong baseline for qb.

2.4.5 Neural Document Retrieval
Neural networks have also proven to be effective document retrievers, and their

design has evolved from augmenting the output of a classical system to replacing it
entirely (Mitra and Craswell, 2018).

Initial neural systems do not replace the retrieved document setDk, but instead
re-rank its results (Wang et al., 2018). If the underlying system has high recall at nk,
but low precision in the first few documents then this method is effective. Neural
networks can also adaptively determine an appropriate number of documents to
retrieve to reduce noise in the results (Kratzwald and Feuerriegel, 2018). Other
work uses neural networks to reformulate queries to a classical ir retriever (Buck
et al., 2018) or even iteratively retrieve documents (Das et al., 2018). As effective as
they are, these systems are restricted by the accuracy and recall of the underlying,
black box ir system.

Current state-of-the-art in document retrieval replaces classical systems with
an end-to-end neural approach. Like classical systems, neural retrievers define a
similarity score si = fn(Ed(di), Eq(q)) that factorizes the representation of the doc-
uments and questions. This factorization allows all the document encodings to be

35b and k1 are hyper parameters.
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pre-computed once training is complete. The primary challenges are defining the
scoring function in a way that is computationally scalable in nd, defining the form
of the encoders, and defining the loss function that encoder parameters are trained
with.

Most document retrievers encode questions and documents with a text en-
coders from Section 2.4.3. For example, orqa (Lee et al., 2019), realm (Guu et al.,
2020), dpr (Karpukhin et al., 2020), rag (Lewis et al., 2020b), and Colbert (Khat-
tab and Zaharia, 2020) use the bert architecture for both Eq and Ed and later
fine-tune it with a retrieval-specific loss function. Similarly, all of these models use
maximum inner product search (Ram and Gray, 2012, mips)—typically just the dot
product—as the similarity function. Using dpr as an example, the question encod-
ing bert(“what was the first Mars rover?”) is compared using the dot product to
every Wikipedia passage encoding bert(d)—including one mentioning the answer
“Sojourner”; The highest scoring passage as returned. Exhaustive calculation of dot
product similarity is efficient even across all documents D (Abuzaid et al., 2019) and
can be made more efficient through approximate nearest neighbor search (Johnson
et al., 2019). Next, we describe how the retriever’s parameters are trained.

Although models vary in exact training procedure, the general approach is
to define a metric learning loss based on the score and relevance label of the doc-
ument (Kulis, 2012). For example, the loss may be binary cross-entropy using a
binary relevance label and a (probability) score ranging from zero to one. In par-
ticular, this framing imposes the inductive bias that the document and question
encodings should have a high score fn(Ed(di), Eq(q)) when the document is labeled
as relevant. The labels for document relevance may be defined in the task itself (e.g.,
squad or nq) or automatically generated like orqa’s Inverse Cloze Task (Lee et al.,
2019). While this general approach is not the only way to train these encoders, it is
one effective and general-purpose approach. The next component of the two-stage
qa system is the model for deriving answers from the question and/or document.

2.4.6 Neural Answering Module
The role of the answering module is to—given the question and (optionally)

relevant documents—return the most likely answer. The form of the answers de-
pends on the task; for qb it is a Wikipedia entity, for squad and nq a text span,
and for open qa free text. Although the documents for the answer module may
already have an encoding from the classical or neural retriever, most answer mod-
ules re-encode the question, document, or both. This is desirable since the retriever
representations of the question and document are independent of one another and
therefore not particularly expressive. Here we describe neural architectures and loss
functions for (1) models that take only the question as input and (2) that take the
question and a document as input.

The simplest architecture for qb is classification over the answer classes (dis-
tinct Wikipedia titles). As in the retriever, the question can be represented by
any of the text encoders in Section 2.4.3. Following this, the representation can be
passed to any number of hidden layers before being projected to the classification
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dimension. This output layer has logits corresponding to each answer label, and the
model is trained with cross-entropy loss. For further details on this type of model,
we refer the reader to Section 5.5.

For tasks like squad and nq (or qb with supporting evidence like triviaqa),
the prediction is the shortest text span in the document most likely to contain
the answer. Thus, one goal of re-encodings in these tasks is to jointly encode the
question and document to identify tokens that are most relevant to the answer.
For example, bidaf (Seo et al., 2017) adds question-to-document and document-
to-question attention mechanisms; interpreting the document with the question “in
mind” has shown to be important in qa (Weissenborn et al., 2017). More recent
architectures like transformers jointly model questions and documents through all
layers. Other models may jointly model this and additional information such as
graph connections (Zhao et al., 2020a,b). In all of these models, the sequence of
outputs is used to classify whether each token is the start or end of the correct
answer span.

Throughout this thesis we use classical and neural ir and qa as parts of dialog
systems (Chapter 3), systems that play qb (Chapter 5), and a human-in-the-loop
question writing interface (Chapter 6). Before moving to this work, we briefly review
prior work in qb that laid the foundation for Chapters 5 and 6.

2.5 Prior and Related Work in Quizbowl

Although qb has been played for decades, the first online interface was only
created in 2012 (Figure 2.9a). After a day online, over 7000 games were played,
and by the end of the two-week data collection period, 43000 questions were played
by 461 users (Boyd-Graber et al., 2012). After the initial interface was taken of-
fline, enterprising members of the qb community reacted to the sudden depriva-
tion by resurrecting the interface. Over the years, its successor Protobowl (http:
//protobowl.com) collected orders of magnitude more data and built a competitive
experience by adding multiplayer support (He et al., 2016b).

On both platforms, users play questions from prior tournaments: words in the
question are revealed one-by-one until the player attempts to answer the question.
Every time a question is played, the word that the player buzzed on, their answer,
and whether their answer was correct are recorded. In Chapter 5, we discuss how
updated this dataset to include 3.9 million records from over ten thousand users.

The qb-related work in this thesis uses “tossup” questions, but there are other
types such as bonus questions as in qbLink. Each bonus question contains multi-
ple parts, and the player answers each one-by-one. Bonus questions reward multi-
step reasoning by making later questions dependent on correctly answering previous
questions. qbLink (Elgohary et al., 2018) builds a dataset of these bonus questions.
While qb and its educational focus are a distinctly positive example of intellectual
competition, the measurement of human intelligence more generally has not always
a net benefit to society.
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One is Monte Carlo if at least half of the possible results for all x in a language it says 
"yes" and "no" otherwise. One is called unambiguous if for any x there is at most one 
accepting computation. One is called oblivious if the position of the cursor at the t-th step 
depends only on the t and the length of the input. One is non-deterministic if its sets of 
next states may contain more than one element. For ten points, identify this model of 
computation named for

Text Reveal Speed

Question from ACF Nationals 2007 (Berkeley)

Don't show questions from this packet again

Don't show questions from this tournament again

Answer (or press space)

Answering questions as: Jordan

Correct!
People who answered before you did:
Kevin
Parag
Irene

People who answered after you did:
Cecilia
Jim

Incorrect Answers:
Turntable
Toaster
Computer
Poland
Algorithm

(a) The 2012 interface was the first way to play qb online (Boyd-Graber et al., 2012).

(b) The qb interface from He et al. (2016b) for collecting gameplay. Beyond using modern
web frameworks, it also allows for real-time competitive play and chat with other players.

Figure 2.9: The original qb interface and a popular modern interface for playing qb
online. Both interfaces reveal questions word-by-word until a player interrupts the
system, and makes a guess.
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2.6 The Harrowing Past of Measuring Human Intelligence

This thesis takes inspiration for measuring machine intelligence from how hu-
man intelligence has been measured in psychometrics,36 a field concerned with the
measurement of intelligence, skill, and abilities in humans (Guilford, 1954). There-
fore, it feels necessary to acknowledge and raise awareness of how measurement of
human intelligence was used to justify eugenic and racist policies that contributed
to horrific human rights violations and discuss how this history is relevant to the
present day. At least two pioneers of psychometrics, Francis Galton and J. McKeen
Cattell (Jones and Thissen, 2006), were eugenicists that held repugnant views advo-
cating that society “welcome and support the eugenic movement tending to limit the
birth of feeble-minded and defective children” (Cattell, 1915). In the United States,
the legal implementation of forced sterilization of the “feeble minded” was endorsed
by the U.S. Supreme Court in Buck v. Bell (Court, 1927; Gross, 2016). Similar
justifications were employed by 30 states in legislation that led to the sterilization
60,000 U.S. citizens across 30 states (Norrgard, 2008) including Puerto Rico where
“about one third of women of childbearing age, a figure that remained constant
through the 1980s,” were sterilized (Briggs, 2003). Eventually, “America’s eugenic
movement spread to Germany as well, where it caught the fascination of Adolf Hitler
and the Nazi movement,” directly contributing to the Holocaust (Black, 2012).

Faced with the need and opportunity to “scientifically” support unscientific,
eugenic views like scientific racism (Gould, 1981), “eugenicists labored to devise
objective methods of measuring and quantifying valued traits, including intelli-
gence” (Reddy, 2007). The Alpha and Beta group intelligence tests of WW1 are
the first example of large-scale intelligence tests that directly influenced access to
opportunities (for military recruits in this case). These tests “became models for
future group tests” (Spring, 1972) despite the fact that a developer of these tests,
the eugenicist Henry H. Goddard, later admitted “we do not know what intelligence
is” (Goddard, 1920). The same intelligence tests were later used to support the eu-
genic Immigration Act of 1924 (Gelb et al., 1986; Jacobson, 1999, p. 83–85).37 While
the Alpha and Beta intelligence tests—created and promoted by eugenicist Carl C.
Brigham—are lesser known to the common person, their immediate intellectual de-
scendant is known to nearly every college student as the Scholastic Aptitude Test or
sat (Lemann, 2000; Black, 2012).38 Despite this inter-connected history, some still
(falsely) claim that “intelligence tests are not culturally biased against American
blacks or other native-born, English-speaking peoples” (Arvey et al., 1994; Gold-
stein, 2012). As historian and scholar Ibram X. Kendi writes,

Standardized tests became the newest “objective” method of proving
Black intellectual inferiority and justifying discrimination, and a multimillion-

36For example, Item Response Theory (4) was originally developed in psychometrics and is used
in Chapter 4.

37The Immigration Act severely restricted immigration to the United States “to preserve the
ideal of U.S. homogeneity” (U.S. Department of State Office of the Historian, 2021).

38While Brigham later recanted his view that the sat could measure intelligence, substantial
irreparable damage had already been done by fueling eugenic discourse.
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dollar testing industry quickly developed in schools and workplaces (Kendi,
2016, p. 310).

Since then, Kendi has called standardized tests “the most effective racist weapons
ever devised to objectively degrade Black and Brown minds” (Kendi, 2020) and some
in psychology have argued that “the validity of iq tests is questionable” (Weiten,
2016, p. 281).

In a world where numbers—such as the sat (and other intelligence tests)—
and algorithms play crucial roles in structuring society (O’Neil, 2016, p. 134),
it is crucial to consider the role that technology plays in society. The evolution
of psychometrics and the standardized testing industry is one example of a “New
Jim Code: the employment of new technologies that reflect and reproduce existing
inequities but that are promoted and perceived as more objective or progressive
than the discriminatory system of a previous era” (Benjamin, 2019, p. 5).39 This
and numerous other examples emphasize that,

No object or algorithm is ever either good or evil itself. It’s how they’re
used that matters. . . Forming an opinion on an algorithm means un-
derstanding the relationship between human and machine. . . It’s about
asking if an algorithm is having a net benefit on society (Fry, 2018, p.
3).

In the context of testing machine intelligence, the goals of this thesis are to use
this technology to better serve humans seeking to expand their knowledge (e.g.,
Chapter 6) and improve how we compare the effectiveness of machines on qa tasks
(e.g., Chapters 4). As we highlight in Chapter 7, we should—as a field—critically
think about the ways that incentive structures in benchmarks influence the type of
algorithms and technology rewarded with recognition and use these structures as a
way to reward algorithms that are a net benefit to society. Finally, as we discuss
multiple times in this thesis, comparisons between humans and machines on qa
tasks should not be used to make claims of the intellectual superiority of one over
the other.

In the next chapter, we revisit the Cranfield paradigm and introduce a new
dataset for conversational information-seeking. Following this, Chapter 5 describes
the traditions of qb as a trivia game, frames it as a machine learning task, builds
models to play the game, and evaluates them with offline metrics and live exhibition
matches. Afterward, Chapter 6 introduces a methodology for centaur authoring of
adversarial questions. We conclude by outlining directions for future work.

39Benjamin’s coining of the term a “New Jim Code draws on The New Jim Crow, Michelle
Alexander’s (2012) book that makes the case for how the US carceral system. . . permits legalized
discrimination” (Benjamin, 2019, p. 8).
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Chapter 3: Information Seeking in the Spirit of Learning:
A Dataset for Conversational Curiosity

So great is our innate love of learning and of knowledge that no
one can doubt that man’s nature is strongly attracted to these
things even without the lure of any profit.

Marcus Tullius Cicero, 45BCE

Conversations are a natural form for humans to seek information,
and there are decades of study on formal dialogues and
interactions of users with reference librarians. The natural next
step is to design automated systems that are ‘virtual librarians’,
eliciting information needs, correcting misconceptions, and
providing the right amount of information at the right time
across all possible domains.

Research Frontiers in Information Retrieval:
Report from the Third Strategic Workshop on
Information Retrieval (Culpepper et al., 2018)

With working definitions of the Cranfield and Winograd paradigms in hand,
we introduce a dataset for conversational information-seeking that whose evaluation
follows the Cranfield paradigm. This work contributes a large resource of 14K di-
alogs to the nascent area of conversational information-seeking (Dalton et al., 2020),
investigates various means to evaluate the effectiveness of dialog strategies, and pro-
poses a baseline model for the dataset’s dialog task.1 At the heart of the task is a
dialog between a user and an assistant—role-played by human annotators—where
the user is encouraged to engage in curiosity-driven inquiry about a geopolitical
entity. We design dialog interfaces so that while they converse, we record infor-
mation that characterizes the assistant’s dialog strategies and measure the user’s
engagement both directly and indirectly. With this data, we validate that answers
to user questions that build on pre-existing knowledge tend to increase engagement
as measured by the number of times that the user asks a followup question. In the
next chapter, we contrast this dataset’s goal of increasing user engagement with
Quizbowl’s goal of testing knowledge.

1This chapter is based on the emnlp publication Rodriguez et al. (2020).
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U: <assistant wake-word>, tell me about Tahiti.
A: It’s the largest island in French Polynesia, near the center of the Pacific
U: What is its history with France?

Figure 3.1: An example of information-seeking dialog that the Curiosity dataset
aims to support. Assistants should answer user questions and convey information
that inspires meaningful followup questions.

3.1 Motivation for Conversational Information-Seeking

Humans are naturally epistemically curious (Berlyne, 1954) and conversational
agents—such as Alexa, Siri, and Google Assistant—should encourage this by helping
users discover, learn, and retain novel factual information. More generally, systems
for conversational information-seeking should help users develop their information
need, be mixed-initiative, incorporate user memory, and reason about the utility of
retrieved information as a combined set (Radlinski and Craswell, 2017). We focus on
a curiosity-driven, information-seeking scenario where a user starts a conversation
with an assistant by asking an open-ended question and then drills down into interest
areas (Figure 3.1).

In this setting, what policies should assistants pursue to maintain the user’s in-
terest in the topic? Theories of human learning, such as Vygotsky’s zone of proximal
development, posit that learning novel information should be rooted in pre-existing
knowledge and skills of the learner (Chaiklin, 2003). Considering this, a good policy
may give general information about Tahiti; a better policy would select information
related to the user’s knowledge (e.g., familiarity with France); along similar lines,
Jennings (2006, p. 81) articulates that “if you already know a few little bits. . . the
new information has something to cling to, barnacle-like, in your synapses.” We
hypothesize that engagement and by proxy satisfaction is correlated with policies
that integrate a user’s pre-existing knowledge, and we test this through a large-scale,
Wizard-of-Oz (woz) style collection (Kelley, 1984; Wen et al., 2017) that captures
assistant policies, user reactions, and topically relevant entities that the user knows
about. This dataset—the Curiosity dataset—has 14,048 English dialogs annotated
with sentence-level knowledge grounding, the user’s prior knowledge, dialog acts per
message, and binary ratings per message.2

In our dialog task (Figure 3.2), one worker takes the role of a curious user
learning about a geographic entity and the other of a digital assistant with access
to Wikipedia facts (§3.2). At the start of each dialog, the user is assigned an entity
as their topic (e.g., Puerto Rico) along with two aspects (e.g., history and demo-
graphics) to investigate. Beforehand, we show the user a list of entities related to
the topic, and they mark which they know; these entities are a sample of their pre-
existing knowledge. The user engages in open-ended discovery while the assistant
simultaneously answers the user’s questions and proactively introducing facts likely

2Dataset and code at curiosity.pedro.ai.
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(4)  Dialog Acts
& Like Labels

Annotation

Could you tell me about 
Puerto Rico’s history?

It was a Spanish colony until 
1898 when the U.S. acquired it 
as part of the Treaty of Paris.

User

Assistant

liked inform_response

request_aspect

Topic: Puerto Rico
Aspects: History, Demographics *

User knows about ** Assistant sees
General Facts
* Aspect Facts
** Rooted Facts

Spaniards
San Juan

United States

(1)  Quiz Completion (2) Relevant Facts from Wiki

(3) Human-Human Role-playing Dialog Creation

Figure 3.2: We sample pre-existing knowledge by asking users to indicate which
topically related entities they already know. The assistant paraphrases facts related
to either known entities (rooted facts), an aspect (aspect facts), or the topic generally
(general facts). The user expresses engagement through a like button. Dialog acts
are annotated in a separate crowd-source task.

to prompt followup questions. For example, if the assistant knew of a user’s famil-
iarity with astronomy when providing information about Puerto Rico, then the user
is more likely to engage with and remember facts about the Arecibo Observatory.

Although our dialog task methodology differs from typical Cranfield evalua-
tions (§2.1.1), we share the same end goal to satisfy users. Section 3.3 uses dialog
act annotations combined with explicit and implicit user feedback to compare as-
sistants’ content selection and presentation policies. For example, in interactions
where the user asks a question and the assistant paraphrases a fact, how often does
the user ask a followup question versus trail off in disinterest? Most datasets (Sec-
tion 3.6) do not have enough annotations to answer these questions since it requires
message-level dialog act annotations and feedback signals. We compare three assis-
tant policies: using a fact with a rooted entity, a fact from the user’s aspect, and
a generic fact about the topic. The policies are compared through user “likes” of
assistant messages and by the dialog act of their subsequent message (e.g., did they
ask a specific followup or change topic).

While the focus of this work is in creating the Curiosity dataset and a method-
ology for measuring user interest, we also introduce models that attempt to mimic
assistant policies. These models predict what type of message to send and which
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fact to use (§3.4), but do not generate dialog text. Since there are multiple facets to
the assistant’s actions, we jointly train models with a multi-task objective function.
We compare an end-to-end bert (Devlin et al., 2018) model to our task-specific Hi-
erarchical Recurrent Encoder model (Serban et al., 2015) and show that our model
(charm) improves over the baseline.

In summary, this chapter makes three main contributions: (1) we design an
experiment to test the efficacy of personalizing conversational information systems
through a user’s prior knowledge, (2) introduce the Curiosity dataset—the first dia-
log dataset combining sentence-level knowledge groundings, per message ratings, and
per message dialog act annotations, allowing for robust and fine-grained structural
learning of dialog policies for similar applications, and (3) design a multi-task model
that incorporates the user’s prior knowledge and improves over a bert baseline.

3.2 Building the Curiosity Dataset

This section describes the construction of the Curiosity dataset. Dialog topics
consist of prominent world geographic entities. The worldwide spread of entities
makes each novel to most users, the consistent topic type makes starting dialogs
easier, and their rich histories, demographics, and economics add topical diversity.
For example, most people are only vaguely familiar with the history of Puerto Rico,
but most know about related concepts such as the United States or Hurricane Maria.
Section 3.2.1 describes how we select geographic topics, aspects, and derive a set of
facts to ground against. We collected the dataset in two steps: (1) collecting dialogs
with a custom interface (Section 3.2.2) and (2) after-the-fact dialog act annotation
(Section 3.2.3). Sample dialogs from the Curiosity dataset are in Appendix A.3.

3.2.1 Choosing the Geographic Topics, Aspects, and Facts for the
Dataset

We select 361 geographic pages from Wikipedia that have separate geography
and history pages (e.g., Puerto Rico, Geography of Puerto Rico, and History of
Puerto Rico).3 We use sentences from each page to build a set of 93,845 facts. We
run an entity linker over the content (Gupta et al., 2017) and index each fact by its
source page (topic), source section (aspect), and mentioned entities. Finally, we fit a
tf-idf text matcher (Rajaraman and Ullman, 2011) with Scikit-Learn (Pedregosa
et al., 2011). While conversing, assistants are shown facts filtered by topic, aspect,
or mentioned entities, that are ranked by textual similarity to the dialog.

3.2.2 User and Assistant Dialog Interfaces
To collect dialogs, we build user and assistant interfaces for annotators. The

user’s interface samples their prior knowledge of a topic, captures which assistant
3The existence of a page implies that the topic has ample historical and geographical knowledge

to draw from.
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Your goal is to learn about Lesotho
Especially about its "Culture" and "History".

Completing this Quiz is VERY important!
It helps the assistant answer your questions
Check boxes if

1. Geography: if you could locate it on a map
2. Concept: if you could accurate explain what it is

When done, tell the assistant what you want to learn about

Related Entities

Entity Do you know

Pretoria

Sotho people

United States

Temple Mount

Mohale's Hoek Distrct

South Africa

Orange Free State

Basutoland

Book of Common Prayer

Africa

United Kingdom

Asia-Pacific Economic Cooperation

Done or I do not know any of these

Figure 3.3: In this example, the user is assigned to learn about Lesotho, specifically
its culture and history. Given their topic, we users indicate which (related) entities—
related to Lesotho—are familiar. Related entities range from relatively common like
the United States to lesser known like Basutoland. We also provide guidelines and
videos before crowd-workers start working on the task.

messages interest them, and manages the dialog context. The assistant’s interface
provides contextually relevant facts. Appendix A.1 has screenshots and details of
each interface component.

Sampling User’s Prior Knowledge When deployed, digital assistants can draw
from prior interactions (Raman et al., 2014) to estimate what a user knows. How-
ever, since we do not have these prior interactions, we collect information about
what users know. Instead of exhaustively asking about every entity related to the
topic, we sample this knowledge. Before the dialog begins, we show the user fif-
teen related entities that range from commonplace to obscure (United States versus
Taíno). Users mark the entities they could (1) locate on a map or (2) summarize
succinctly in one sentence (Figure 3.3).
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Figure 3.4: The user expresses the “interestingness” of the assistant’s messages
through a “like” button (right of message). This is one of the two ways that we
estimate user satisfaction.

Like Button for User Interest As part of our collection, we aimed to determine
what fact-grounded utterances users found interesting. Users were told to “like” the
assistant’s message if they found it “interesting, informative, and relevant to their
topic” (Figure 3.4). These likes are an explicit means to estimate user satisfaction.

Assistant’s Topic Summary and Fact Bank The worldwide spread of Curios-
ity’s entities makes them unfamiliar to most crowd-workers, including the assistants.
So that the assistant can still engage the user, the assistant interface provides con-
textually relevant information. First, the interface shows a topic summary from
Wikipedia. Second, the assistant paraphrases facts from a contextually updated
fact bank (box 2 in Figure 3.2 and Figure 3.5). To reduce information overload,
we use simplified topic descriptions from SimpleWikipedia and show a maximum of
nine facts at a time.4 We encourage assistants to “stimulate user interest and relate
information to things they already know or have expressed interest in.” Assistants
are instructed to select relevant facts, click the “use” button, and paraphrase the
content into their next utterance.

Like Dinan et al. (2019b), the fact bank selects facts to the assistant using tf-
idf textual similarity (§2.4.4) to recent dialog turns but differs by incorporating the
user’s prior knowledge. We show the assistant nine facts: three facts that mention
an entity familiar to the user (rooted facts), three facts from their assigned aspects
(aspect facts), and three from anywhere on the page (general facts). By construction,
rooted facts overlap with the exclusive categories of aspect and general facts. For
each category, we find the nine highest tf-idf scoring facts and then randomize
their order. To avoid biasing the assistant, we do not inform them about the user’s
known entities or distinguish between types of facts.

3.2.3 Dialog Act Annotation
Inducing structure on conversations through dialog acts is helpful for analysis

and downstream models (Tanaka et al., 2019). We introduce structure—beyond
4If a description exists in simple.wikipedia.org, we use that; otherwise, we use the description

from en.wikipedia.org.
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Figure 3.5: The assistant can incorporate any number of facts into their reply to the
user. Their goal is to answer the user’s immediate questions, and anticipate what
information they would be most interested in.

knowledge groundings—into Curiosity by annotating the dialog acts of each mes-
sage. The dialog act annotation schema is based on iso 24617-2 (Bunt et al., 2010,
2012) with customized sub-categories for our scenario; Table 3.1 shows our schema,
descriptions, and examples. The dialog acts are annotated in a separate collection
using a custom annotation interface (Appendix A.2). In our case, knowledge ground-
ings paired with dialog acts are helpful for identifying assistant policies (§3.3.1.2).

3.2.4 Validating Data Quality
We crowd-sourced conversations in two phases using parlai (Miller et al., 2017).

In the first, pilot studies collect feedback from individual workers. Based on feed-
back, we create task guidelines, sample dialogs, a faq, tutorial videos, and qual-
ification tests. These materials were used to train and qualify crowd-workers for
the second phase. During the second, we monitor the interface usage and removed
workers that ignored instructions.

To validate the quality of dialog act annotations, we use Krippendorff’s α (Krip-
pendorff, 2004). Dialog acts are multi-class and multi-label: a message can have
none, one, or multiple dialog acts (e.g., positive feedback and followup). However,
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Dialog Act Count Description Example

request topic 10, 789 A request primarily
about the topic.

I’d like to know about Puerto Rico.

request aspect 41, 701 A request primarily
about an aspect.

Could you tell me about its history?

request followup 4, 463 A request about men-
tioned concept.

Do you know more about the Taínos?

request other 10, 077 Requests on unmen-
tioned concepts.

What is there to know about cuisine?

inform response 59, 269 Directly answer an info
request.

Taínos were caribbean indigenous.

inform related 6, 981 Not a direct answer, but
related info.

I do not know, but. . .

inform unrelated 557 Does not answer ques-
tion, not related.

Politics is tiring!

feedback positive 26, 946 Provide positive feed-
back

Thats quite interesting!

feedback negative 176 Provide negative feed-
back

Thats pretty boring.

feedback ask 36 Ask for feedback Do you find < info > interesting?

offer topic 91 Offer to discuss topic Want to learn about Puerto Rico?
offer aspect 1, 440 Offer to discuss aspect How about more on its demographics?
offer followup 63 Offer to discuss men-

tioned concept.
I could say more about the Spanish.

offer other 1, 619 Offer to discuss unmen-
tioned concept.

How about I tell you about its ex-
ports.

offer accept 1, 727 Accept offer of informa-
tion.

I’d love to learn about its history.

offer decline 405 Decline offer of informa-
tion

Sorry, I’m not interested in that.

Table 3.1: Counts, descriptions and examples of the dataset’s dialog acts.

Krippendorff’s α is typically computed for single-label tasks from a table where
rows represent examples, columns represent annotators, and cells indicate the sin-
gular class label. We convert our multi-label problem to a single label problem by
making each combination of example and label class a row in the table (Table 3.2).
Since there are few dialog acts per utterance, most annotations agree; however, since
Krippendorff’s α focuses on disagreement, it is appropriate for this scenario. Using a
separate interface (Appendix A.2), we doubly annotate 4,408 dialogs and the agree-
ment score 0.834 is higher than the 0.8 threshold recommended by Krippendorff
(2004). Next, we analyze the annotated dialogs and introduce our model.

3.3 Dataset Analysis

Next, we show that users prefer aspect-specific, rooted facts and then show
general statistics of the Curiosity dataset.
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Annotator 1 Annotator 2
Utterance 1, Label A Yes No
Utterance 1, Label B Yes No
Utterance 2, Label A Yes Yes
Utterance 2, Label B Yes Yes

Table 3.2: Consider a task where each utterance has labels A and B. In the single-
label version, each utterance is labeled as either A or B. The table shows the out-
come of converting the multi-label version to single-label by creating a row for each
example–label combination. Cell values are binary indicators.

3.3.1 What Facts do User Prefer?
Earlier, we hypothesized that when assistants use facts that mention previ-

ously known entities (rooted facts), that users will be more likely to engage (§3.1).
In our data collection, we incorporate two mechanisms to test this hypothesis. The
first mechanism is explicit: we directly ask users—through a like button—to in-
dicate what messages they preferred. The second mechanism is implicit and de-
rived by mining dialogs for specific sequences of dialog acts that suggest engage-
ment with the content. For each of these mechanisms, we compute the likelihood
P (Prefer |Fact Source) of a user preferring utterances grounded to each fact source
(Rooted, Aspect, or General). Figure 3.6 shows this likelihood and indicates that
users prefer: (1) facts relevant to aspects versus general ones and (2) rooted facts
in three of four scenarios.
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Figure 3.6: User engagement is measured by dialog act followups (left) and like but-
ton usage (right). We compare reactions to messages that use a fact mentioning an
entity the user knew about (rooted) and whether the fact is general or aspect-specific.
Pairwise differences are statistically significant (99%+) with a two proportion z-test
except for dialog act followups between rooted and non-rooted general facts. Over-
all, users prefer on-aspect, rooted facts.
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3.3.1.1 Likes for Explicit Preference Elicitation
Explicit preference is computed directly from like button usage and shown on

the right panel of Figure 3.6. Overall, users liked 60% of messages, and they prefer
on-aspect, rooted facts.

3.3.1.2 Mining Acts for Implicit Preferences
When users ask specific followup questions—as opposed to generic ones—about

an assistant’s fact, it shows that the user implicitly prefers these kinds of messages.
For example, asking about an entity like the Taínos is more specific than asking
about history and therefore indicates engagement. We identify these interactions
by mining for assistant-user message pairs where the assistant uses a fact and their
message is has an “inform” dialog act. With these, we compute the likelihood

P (Outcome = request followup |Fact Source)

that the user’s message has the “request followup” dialog act given the source. Sim-
ilarly to likes, users engage more with aspect-oriented and rooted facts.

3.3.1.3 Paraphrase Analysis
Although our work does not include a paraphrase model, we manually analyze

a random sample of two hundred and fifty assistant messages where facts were
used (Figure 3.3). Of these messages, 51% were acceptable paraphrases, 27% were
verbatim copies, 12% were contextualizations of near copies, and the remainder were
errors such as incorrect paraphrases or did not incorporate the fact. Appendix A.4
shows descriptions, counts, and random examples of each category. This analysis
estimates that about half of grounded messages have non-trivial signal for future
paraphrase models to use.

3.3.2 Dataset Statistics
Table 3.4 shows the basic statistics of the Curiosity dataset which contains

14,048 dialogs with 181,068 utterances. The fact database contains 93,845 facts; of
those, 76,120 (81%) were shown to the assistants and 27,486 (29%) were used in at
least one message. We randomly split dialogs for training, validation, and testing.

3.4 Models

We design a machine learning model that predicts assistant and user actions.
We introduce a multi-task architecture for Curiosity that Hierarchically Models
(charm, Figure 3.7) dialogs to: (1) predict the dialog acts of the user message (ut-
terance act prediction), (2) select the best fact (fact prediction), (3) choose the best
set of dialog acts for the next message (policy act prediction), and (4) predict if the
assistant message will be liked (like prediction).
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Category Label Count Percent

Copy verbatim 68 27.2%
Copy cherry-pick 6 2.40%
Copy context 30 12.0%

Copy Total 104 41.6%

Paraphrase paraphrase-correct 111 44.4%
Paraphrase paraphrase-multiple 17 6.80%

Paraphrase Total 128 51.2%

Error paraphrase-error 5 2.00%
Unrelated unrelated 13 5.20%

Total 250 100%

Table 3.3: We analyze the paraphrases annotators use through manual categoriza-
tion. The “Copy” category includes cherry-picked verbatim phrases, verbatim copies,
and contextualized copies (e.g., changing a named entity to “it”). The majority of
paraphrases are correct and only incorporate the provided fact, but a few weave in
other information. 7.2% of paraphrases are either unrelated to the selected facts or
paraphrase the fact incorrectly. Overall, 51.2% of messages have valid paraphrases.

3.4.1 Text Representation
charm jointly encodes the text of utterances and facts with one encoder enc.

Following our prior encoder notation (§2.4.3), enc is a bi-directional lstm (Sutskever
et al., 2014) over concatenated glove (Pennington et al., 2014) word embeddings
and Wikipedia2Vec (Yamada et al., 2018a) entity embeddings.5 The text tui of ut-
terance ui in dialog D is represented as enc(tui ). Similarly, fact fj on turn i is
represented as enc(tfi,j) where j indexes facts shown on that turn.

3.4.2 Dialog Representation
In our models, we use a hierarchical recurrent encoder (hre) architecture (Sor-

doni et al., 2015; Serban et al., 2015) where a forward lstm contextualizes each
utterance to the full dialog. We modify the hre model by adding additional inputs
beyond the utterance’s textual representation. First, we represent user’s known
entities

k = avg(encentity(e1), . . . ,encentity(ek))) (3.1)

as the average of entity embeddings. An entity embedding also represents the topic

t = encentity(topic) (3.2)
5In charm, bert was not as effective an encoder.
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Metric (# of) Total Train Val Test Zero

Dialogues 14,048 10,287 1,287 1,287 1,187
Utterances 181,068 131,394 17,186 17,187 15,301
Likes 57,607 41,015 5,928 5,846 4,818
Topics 361 331 318 316 30
Facts Total 93,845 NA NA NA NA
Facts Shown 76,120 66,913 29,785 30,162 6,043
Facts Used 27,486 21,669 4,950 4,952 2,290

Table 3.4: Curiosity has 14,048 dialogs. On average, dialogs have 12.9 utterances.
60% of the assistants’ 90,534 utterances were liked.
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Figure 3.7: Architecture: charm builds a dialog context up to t = i−1 to predict
the current message’s dialog acts (policy prediction) and the best facts to use. The
model uses this combined with the current utterance to classify it’s dialog acts and
if it will be liked.

of the dialog. Next, we create trained speaker embedding vs for the user and vt for
the assistant. Given the set of all dialog acts A, each utterance has a set of dialog
acts Au ∈ P(A) where P(X ) denotes the set of all subsets of X . Finally, we use an
act embedder act to compute an act representation

a(i) =
1

|Au|
∑
ak∈Au

act(ak) (3.3)

by averaging embeddings at each turn. The input at each step is the concatenation

c(i) = [enc(tui );a
(i); t;k;v] (3.4)

of the representations for text, speaker, topic, known entities, and utterance dialog
acts.6 With this joint representation, the contextualized dialog representation

h(i−1) = lstm(c(1), . . . , c(i−1)) (3.5)
6The speaker embedding v alternates between vs and vt.
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is the final lstm state and includes time step t = i − 1. The dialog up to and
including time i is

d(i) = [h(i−1); c(i)] (3.6)

which emphasizes the current utterance and makes multi-task training straightfor-
ward to implement.

3.4.3 Tasks and Loss Functions
In our model, we jointly learn to predict fact usage, user likes, utterance acts,

and policy acts.

Fact Prediction For every assistant turn, the model predicts which fact(s) from

{f1, . . . , fk} ∈ F (i),F (i) ∈ P(F)

the assistant marked as “used” where F is the set of all facts. We frame this task
as pointwise learning to rank (Li et al., 2008). A fact prediction network

s
f,(i)
j = gelu

([
W f · h(i−1) + bf ; enc(tfj )

])
(3.7)

with parameters W f and bf using a Gaussian Error Linear Unit (Hendrycks and
Gimpel, 2017b) outputs salience scores for each fact. The network does not use
utterance ui since it contains signal from the choice of fact. The predictions

ŷ
f,(i)
j = softmax(s

f,(i)
j ) (3.8)

are converted to probabilities by the softmax

softmax(q) =
exp(q)∑k
j=1 exp(qj)

(3.9)

over k labels. Using this, we compute the fact loss

Lf =
1

|F (i)|
∑
i,j

`ce(ŷ
f
i,j,yi,j) (3.10)

where labels yf,(i)j indicate if fact from utterance i in position j was used and

`ce(ŷ,y) =
k∑
p=1

yp log(ŷp). (3.11)

is the cross entropy loss. To mitigate class imbalance, we also scale positive classes
by nine (Japkowicz and Stephen, 2002).
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Policy Act and Utterance Act Prediction Each utterance may have multiple
dialog acts so we treat policy and utterance act prediction as a multi-label task.
The goal of policy prediction is to choose the best act for the next utterance; the
utterance act classifies the last message’s acts. To predict these acts, we create a
policy act network

sp,(i) = gelu(W p · h(i−1) + bp) (3.12)

and an utterance act network

su,(i) = gelu(W u · d(i) + bu) (3.13)

where the probability of act ak is p∗,ik = exp(s
∗,(i)
k ). From these, we derive the policy

act loss

Lp =

|A|∑
k

yai,k log p
p,(i)
k + (1− yai,k) log(1− pp,(i)k ) (3.14)

and utterance act loss

Lu =

|A|∑
k

ya(i),k log p
u,(i)
k + (1− ya(i),k) log(1− pu,(i)k ) (3.15)

for an utterance at t = i with act labels yai,k.

Like Prediction For every assistant message, the model predicts the likelihood
of the user “liking” the message. We treat this as binary classification, predict the
“like” likelihood

ŷli = softmax(gelu(W l · h(i) + bl)), (3.16)

and use it to compute the like loss

Ll = `ce(ŷ
l
i, y

l
i) (3.17)

where yli indicates if the message was liked. We train the model jointly and optimize
the loss

L = Lf + Ll + Lp + Lu. (3.18)

3.4.4 Model Implementation and Training Details
We implement all models with PyTorch (Paszke et al., 2019) and Allennlp (Gard-

ner et al., 2018). The learning rates for models is set using the built-in learning rate
finder in Allennlp. Model losses were optimized with Adam (Kingma and Ba, 2015);
the bert model uses a learning rate of .0001 and charm a learning rate of .001 with
otherwise default parameters. We train for a maximum of forty epochs and early
stop based on the sum of validation losses. The charm model uses batch size 64
and the bert model batch size 4. In our models, text encoders for utterances and
facts share parameters. Additional hardware and runtime details in Appendix A.6.
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Fact Rank (mrr) Utt. Act (F1) Policy Act (F1) Like (Accuracy)

Model Val Test Val Test Val Test Val Test

Majority Class n/a n/a 0.602 0.604 0.491 0.494 0.690 0.681
e2e bert 0.420 0.418 0.794 0.795 0.635 0.631 0.829 0.822
charm 0.546 0.546 0.845 0.847 0.682 0.682 0.826 0.815
− context 0.516 0.506 0.838 0.842 0.664 0.664 0.824 0.820

Table 3.5: The charm model outperforms end-to-end bert on most tasks. We
compare fact selection with mrr, dialog act prediction with micro-averaged F1, and
like prediction with accuracy. Ablating dialog history degrades context-dependent
tasks (fact selection and policy act prediction), but not tasks more dependent on
one message.

3.5 Modeling Experiments

charm improves over a bert model in most tasks. We evaluate each sub-
task with separate metrics. Fact selection is evaluated with mean reciprocal rank
(mrr). For utterances with at least one selected fact, we compute the mrr using
the selected facts as relevant documents. We compare like prediction with binary
classification accuracy. For utterance and policy act prediction, we compare models
with micro-averaged F1 scores so that frequent classes are weighted more heavily.
For each metric, we report validation and test set scores.

3.5.1 Baselines
bert (Devlin et al., 2018) is a standard baseline for many nlp tasks. We use a

multi-task extension of an uncased bert model as our primary baseline and fine-tune
it for our unique set of tasks (e2e bert). Specifically, we use the cls representation
of each utterance to replace the hre representation as a time-distributed input to
the same multi-task decoders (Section 3.4.3). The context-less charm ablation
replaces the dialog contextualizer lstm with a per-timestep projection layer. Lastly,
we report majority class accuracy for classification tasks.

3.5.2 Discussion
The proposed charm model for conversational curiosity is more effective than

e2e bert for most of the tasks in Curiosity (Table 3.5). Specifically, charm im-
proves significantly in fact prediction (13 mrr points) and both dialog act prediction
tasks (5 F1 points), demonstrating the efficacy of the structural encoding of the var-
ious input modalities. Generally, models accurately predict utterance acts and likes,
but their mrr and F1 scores on fact selection and policy act prediction is compar-
atively worse. To a degree, this is expected since there is not always one best fact
or one best action to take as the assistant; there may be various reasonable choices,
which is common in information retrieval tasks. Nonetheless, models that specif-
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ically factor in the relationship between prior knowledge and entities should yield
improvements. For example, Liu et al. (2018) predict the most relevant unmentioned
entity while Lian et al. (2019) model a posterior distribution over knowledge. We
leave these improvements to future work.

3.6 Related Work

Our work builds on knowledge-grounded conversational datasets and modeling.

Datasets Although there are numerous grounded datasets, we did not find one for
conversational information seeking that contained fine-grained knowledge ground-
ings, message-level feedback from the user, and dialog acts. Table 3.6 compares the
Curiosity dataset to several others according to six factors: (1) is the goal of the task
information seeking, (2) is the dataset collected from natural dialog with one par-
ticipant always taking the role of an assistant, (3) are dialog responses constrained,
(4) are document groundings annotated—as opposed to distantly supervised—and
fine-grained, (5) is there message level feedback for the assistant, and (6) is the
dataset annotated with dialog acts.

Our dataset is most similar to those for information-seeking such as quac (Choi
et al., 2018), Wizard of Wikipedia (Dinan et al., 2019b, wow), cmu dog (Zhou
et al., 2018b), ms marco (Nguyen et al., 2016), Topical Chat (Gopalakrishnan
et al., 2019), the trec Conversational Assistance track (Dalton et al., 2019, cast),
and Search as a Conversation (Ren et al., 2020, saac). quac constrains assistant re-
sponses to spans from Wikipedia, which makes it better for conversational question
answering, but prevents more sophisticated assistant policies. quac also provides
dialog acts, but they exist so that the assistant can inform the user of valid actions;
we annotate dialog acts after-the-fact so that we can compare freely chosen user
responses. Like quac, Topical Chat, saac, and wow have annotated knowledge-
groundings for each message, but responses are free-form. saac is a contemporane-
ous, cast-based dataset that shares our motivation to make conversation a medium
for information-seeking. Topical Chat includes user feedback, but instead of ex-
plicitly defined roles, workers implicitly take dual and alternating roles as the user
and assistant through knowledge asymmetry; followup work added automatically
annotated dialog acts to Topical Chat (Hedayatnia et al., 2020).

Many tasks instruct annotators to take on a specific role in the dialog. For
example, in Wizard of Wikipedia, annotators assume an assigned persona (Zhang
et al., 2018a) in addition to being the user or assistant. Consequently, many dialogs
revolve around personal discussions instead of teaching about a topic. Additionally,
annotators may not have the background to play their role. In contrast, we ask
annotators to take roles that—as humans—they already know how to do: read about
and convey interesting information on a topic (assistant) and engage in inquiry about
a novel topic (user).

Our work is one of many in knowledge-grounded conversational datasets. For
example, Moghe et al. (2018) have workers discuss movies and ground messages to
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Dataset Info
Seek-
ing

Dialog
w/Assistant

Free
Re-

sponse

Annotated
Ground-

ing

Message
Feed-
back

Dialog
Acts

Curiosity (ours) 4 4 4 4 4 4

Topical Chat 4 " 4 4 4 "
(Gopalakrishnan et al.,
2019)
Search as a Conversation 4 4 4 4 7 7

(Ren et al., 2020)
Wizard of Wikipedia 4 4 4 4 7 7

(Dinan et al., 2019b)
quac (Choi et al., 2018) 4 4 7 4 7 "
cmu dog (Zhou et al.,
2018b)

4 4 4 " 7 7

ms Marco Conversational 4 7 n/a n/a n/a n/a
(Nguyen et al., 2016)
opendialkg (Moon et al.,
2019)

7 4 4 4 7 7

coqa (Reddy et al., 2019) 7 4 " 4 7 7

Holl-E (Moghe et al., 2018) 7 " 4 4 7 7

Commonsense 7 7 4 7 7 7

(Zhou et al., 2018a)
Reddit+Wiki (Qin et al.,
2019)

7 7 4 7 7 7

Table 3.6: 4 indicates a dataset has the feature, " that it does with a caveat,
and 7 that it does not. Conversational ms marco is a search dataset but has
inquiry chains we want assistants to induce (exemplar in Appendix A.7). Topical
Chat and Search as a Conversation are motivationally similar. While our dataset’s
combination of (human) annotation is unique, all three datasets are steps forward
in resources for conversational information-seeking.

plot descriptions, reviews, comments, and factoids; however, one worker plays both
roles. In opendialkg (Moon et al., 2019), annotators ground messages by path-
finding through Freebase (Bast et al., 2014) while discussing and recommending
movies, books, sports, and music. Qin et al. (2019) use Reddit discussion threads
as conversations and ground to web pages. Similarly, Ghazvininejad et al. (2018)
collect Twitter three-turn threads and ground to Foursquare restaurant reviews.
Our work adds to this dataset compendium.

External Knowledge in Models Our model is related to those that incorpo-
rate external information like facts in question answering (Weston et al., 2015;
Sukhbaatar et al., 2015; Miller et al., 2016a), knowledge base triples in dialog mod-
els (Han et al., 2015; He et al., 2017; Parthasarathi and Pineau, 2018), common
sense (Young et al., 2017; Zhou et al., 2018a), or task-specific knowledge (Eric and
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Manning, 2017). Similarly to Kalchbrenner and Blunsom (2013); Khanpour et al.
(2016), charm predicts the act of the current message, but also next message’s act
like Tanaka et al. (2019) do.

3.7 Future Work and Conclusion

This chapter primarily introduces Curiosity: a large-scale conversational
information-seeking dataset. Like much work in ir and the Cranfield paradigm,
the primary goal of this dataset is to help build models that better satisfy users—in
this case, in the context of curiosity-driven dialog. Aside from building the Curiosity
dataset, this work also investigates an alternative, dialog act based method for mea-
suring how often users meaningfully engage with assistant messages which we take
as a proxy for their satisfaction of how interesting the assistant is. With Curiosity’s
unique set of annotations, we design charm which jointly learns to choose facts,
predict a policy for the next message, classify dialog acts of messages, and predict
if a message will be liked. We hope that the Curiosity dataset and contemporaries
will encourage progress and interest in curiosity-driven dialog.

Since we later discuss avenues for more ambitious future work (Chapter 7),
here we discuss three immediate directions for work using the Curiosity dataset.
The first is to augment our charm model with a text generation module to make
a digital version of our human assistants. This involves contextualizing and para-
phrasing facts which our dataset supports. Second, dialog act sequences could iden-
tify additional data-driven policies that could be used to define rewards or losses.
By conditioning on dialog acts or sequences of dialog acts, textual outputs could
be better-controlled (Sankar and Ravi, 2019; See et al., 2019) and combined with
knowledge grounding (Hedayatnia et al., 2020). However, text is not the native
modality of digital assistants.

We envision digital assistants participating in information-seeking, which means
also handling speech input. Consequently, automatic speech recognition (asr) in-
troduces transcription errors which are especially prevalent in knowledge-oriented
text like question answering (Peskov et al., 2019). Gopalakrishnan et al. (2020)
show this is also problematic in information-seeking dialog by comparing models
on textual and asr versions of Topical Chat. To close the loop in conversational
information-seeking, models need to account for the speech-based environment of
digital assistants.

Lastly, for the focus we give to dialog act mining, there is room for significant
room for improvement in the evaluation of models for predicting these. There are
two drawbacks to the current evaluation approach. First, although the dialog act
of interest to us is relatively rare (“request followup”), the dialog act evaluations
use micro-averaged F1 scores which discounts the importance of these rare classes.7
Second, these rare classes are more challenging to detect than some of the most
common classes like “request topic.” That is, a priori, we expect that the most

7At best, macro-averaging F1 would make the class weights equal, but also scale by the number
of distinct classes.
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frequent classes are not only the easiest for a model to predict,8 but are the ones
of least interest to us. Ideally, we would like to have an evaluation methodology
that infers which types of examples are difficult and rewards models appropriately.
Having seen the Curiosity dataset as an example of the Cranfield paradigm, the
next chapter introduces a solution to this particular challenge—which is one shared
across many qa tasks.

8Even ignoring that this class has more training data, we still maintain it is intrinsically more
difficult to detect.
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Chapter 4: Evaluation Examples are not Equally Informative: How
should that change NLP Leaderboards?

A successful evaluation requires a task that is neither too easy
nor too difficult for the current technology. If the task is too
simple, all systems do very well and nothing is learned. Similarly,
if the task is too difficult, all systems do very poorly and again
nothing is learned.

Ellen M. Voorhees, The trec-8 qa Track Report

Before shifting focus to a Manchester paradigm task (Chapter 5), we first
turn our attention to the challenge of evaluating tasks for which the test examples
are not equally difficult.1 In Chapter 3, one example of this problem is evaluating
how well a dialog act classifier works since the most difficult class factors least
into aggregate metrics since it is also a rare class. Taking a wider view, the main
problem is that standard evaluation schemes weigh examples equally, but a cursory
examination shows this assumption to be flawed. Intuitively, any student could tell
you that exam questions are not equally difficult; this is even trivially verifiable
in nlp datasets: poorly annotated examples—which are present to some degree in
many datasets—tend to be either too difficult or too easy. This applies equally well
to most qa evaluations since they use metrics like mean accuracy or mean lexical
overlap that weigh each question equally.

Rather than re-invent the wheel, to address this problem we take inspiration
from work in a field that concerns itself with faithfully and reliably measuring skills
using exams—educational testing. Ultimately, this chapter (1) introduces a method
for weighting examples appropriately and (2) argues we should maximize the ability
of qa evaluations to discriminate between better and worse models. Chapters 5
and 6 subsequently introduce methods for improving the discriminative power of qa
evaluations through better formats and data. To test our method, this chapter takes
a critical look at the dominant evaluation methodology in qa: the leaderboard.

4.1 Leaderboards are Shiny

Leaderboard evaluations—for better or worse—are the de facto standard for
measuring progress in question answering (Rajpurkar et al., 2016) and in many nlp

1This chapter is based on the acl publication Rodriguez et al. (2021).
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Figure 4.1: Difficulty and Ability Discriminating (dad) leaderboards infer the dif-
ficulty, discriminativeness, and feasibility of examples. Negative discriminability
suggests an annotation error; for example, the question with most negative discrim-
inability asks “Why did demand for rentals decrease?” when the answer is “demand
for higher quality housing increased.”

tasks (Wang et al., 2019a). An unfortunate side effect of leaderboard popularity is
sota-chasing, often at the expense of carefully inspecting data and models (Linzen,
2020). For example, the same models that achieve “super-human” question an-
swering (Najberg, 2018) often fail spectacularly (Feng et al., 2018; Wallace et al.,
2019a) by learning non-generalizable statistical patterns (McCoy et al., 2019; Niven
and Kao, 2019); i.e., these are the models that Levesque (2014) refers to as “idiot-
savants” (§1.1). Finally, focusing solely on metrics conflates progress on a specific
task with progress on real-world nlp problems that the task stands in for (Bender
and Koller, 2020). Plainly, focusing on headline sota numbers “provide(s) limited
value for scientific progress absent insight into what drives them” and where they
fail (Lipton and Steinhardt, 2019).

In this chapter we take leaderboards “as they are,” and imagine how they
might better support research. Leaderboards establish differences between models
on a fixed task. Hence, leaderboards should enable and encourage the comparison
of models and inspection of examples. And leaderboards should also reveal when
they have outlived their usefulness (Boyd-Graber and Börschinger, 2020).
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Subjects

Items

Responses
Figure 4.2: A dad leaderboard uses irt to jointly infer item difficulty βi, dis-
criminability γi, feasibility λi, and subject skill θj. These predict the likelihood
pij(rij = 1) of a correct response rij.

4.1.1 How to Direct Leaderboards’ Light
To help focus attention on examples and models of interest, we propose Diffi-

culty and Ability Discriminating (dad) leaderboards that explicitly model both task
and submissions jointly, rather than either in isolation. dad’s underlying model is
based on Item Response Theory (Lord et al., 1968; Baker, 2001, irt, reviewed in
§4.2), a widely used (van Rijn et al., 2016) alternative in educational testing to
simple summary statistics (Edgeworth, 1888).

dad can explicitly identify the difficulty and discriminability of items (Fig-
ure 4.1),2 which in turn can lead to a more nuanced ranking of models, identifying
poor items, and better understanding of a dataset and task. Throughout this chap-
ter, we use the question answering (qa) benchmark squad 2.0 (Rajpurkar et al.,
2018). For example, dad can identify questions that are challenging to models
and questions that are wrong (incorrectly annotated). In addition to better under-
standing datasets, it is also helpful for efficiently selecting evaluation to annotate.
We conclude the chapter with recommendations for future leaderboards (§4.7) and
discuss where irt in nlp can go next (§4.9).

4.2 A Generative Story for Leaderboards

Much as questions are the product of their inputs (§2.2.3), leaderboards are
a product of the metrics, evaluation data, and subjects (machine or human) who
answer items (Figure 4.2). For concreteness, let’s assume that we have a question
answering task and two subjects: Ken, who is good at trivia, and Burt, who is not.
In the simplest irt models, each subject j has a random variable θj corresponding
to their skill: Ken’s is big, Burt’s is small.

2Example and feasibility distribution in Appendix B.1.
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Figure 4.3: In irt, the Item Characteristic Curve describes the probability that
a specific item with difficulty β will be answered correctly as a function of skill
θ. Visualizing the parameters is helpful in a few ways. First, it shows that high
discriminability leads to larger differences in the maximal and minimal correctness
probability (for a given skill range), and the tangent line visually links discriminabil-
ity to the slope. Second, it clearly shows the maximal probability when feasibility
is greater than zero. Lastly, it demonstrates that the inflection point is at the point
where difficulty and skill equal out (in this case, zero).

But you cannot know that until you start asking them questions of varying
difficulty βi. Harder questions have a higher difficulty (“what is the airspeed of an
unladen swallow”) than easy ones (“who is buried in Grant’s tomb”). The bigger
the margin between a subject’s skill θj and an item’s difficulty βi, θj − βi, the more
likely that subject j responds correctly pi,j(ri,j = 1). This is the simplest irt model,
which we call irt-base.

Generally, given n test items X = (X1, . . . , Xn) andm subjects S = (S1, . . . , Sm),
where each subject responds to every item, we want to estimate subject skills and
item difficulties. To discover the random values that best explain the data, we turn
to probabilistic inference (Pearl, 1988).

Two additional random variables further improve dad: discriminability γi and
feasibility λi. Let’s return to the margin between a question’s difficulty βi and a
subject’s skill θj. A discriminative question is challenging but can still be answered
correctly by a strong subject. If Ken’s ability is higher than most items’ difficulty
(θj−βi is large), item discriminability multiplies this gap by γi in a model called irt-
disc. Questions with low γi (discriminability) are low quality: they have annotation
error or do not make sense.

Another way of capturing poor quality questions is the feasibility λi. For
example, if the question “who was the first president” has the answer Rajendra
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Prasad, the question has an unstated implicit assumption that subjects must guess
what country or company the question is about. In the irt-feas model (Figure 4.3),
if a large fraction of subjects all get an item wrong, everyone’s probability of getting
the item right is capped at feasibility λi. In nlp terms, 1 − λi corresponds to the
prevalence of annotation errors that lead to unsolvable items. Having introduced
the constituent elements of the model, we now present the full generative model:

1. For each subject j:

(a) Draw skill θj ∼ N (µθ, τ
−1
θ )

2. For each item i:

(a) Draw difficulty βi ∼ N (µβ, τ
−1
β )

(b) Draw discriminability γi ∼ N (µγ, τ
−1
γ )

(c) Draw feasibility λi ∼ U[0, 1]

3. Draw subject i response on item j,

rij ∼ pij(rij | θj, βi, λi) = pij(rij = 1|θj) =
λi

1 + e−γi(θj−βi)
. (4.1)

For irt-base, γi and λi are fixed to 1.0, while for irt-disc, only λi is fixed.3

Means µθ, µβ, µγ are drawn from N (0, 106) and τθ, τβ, τγ from a Γ(1, 1) prior,
as in Lalor et al. (2019) and recommended by Natesan et al. (2016).4

Because it is difficult to completely codify skill and difficulty into a single
number, we can rewrite the exponent in Equation 4.1 as a sum over dimensions
−γi(

∑
k θj,k−βi,k) where each dimension captures the interaction between an item’s

difficulty and a subject’s skill. For example, perhaps Burt could better exploit
artifacts in one dimension (their skill for θj,k=5 is high but everywhere else is low)
while Ken might not know much about a particular topic like potent potables (θj,k=2

is low but everywhere else is high). We call this model irt-vec.5 Multidimensional
irt models (Reckase, 2009) could—in addition to better modeling difficulty—also
cluster items for interpretation; we briefly experiment with this (Appendix B.6), but
leave more to future work (§4.9).

4.2.1 Examples are Not Equally Useful
irt’s fundamental assumption is that not all items and subjects are equal.

This explains why leaderboards can fail while having “normal looking” accuracies.
As a thought experiment, consider a dataset that is one third easy (βi ∈ [0, 1]), one
third medium difficulty (βi ∈ [2, 3]), and one third hard (βi ∈ [6, 7]). Suppose that
Ken has skill θk = 4 while Burt has skill θb = 2. A standard leaderboard would say

3In psychometrics, irt-base is called a Rasch (Rasch, 1960) or 1 parameter logistic (1PL) model,
irt-disc is a 2PL model, and irt-feas is a 4PL model with guessing set to zero.

4We differ by allowing γ < 0 to help identify bad items.
5We do not incorporate feasibility into the irt-vec model since it already improves over 1D

models without it.
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that Ken has higher accuracy than Burt. But suppose there’s a new subject that
wants to challenge Ken; they are not going to reliably dethrone Ken until their skill
θc is greater than six.

This is a more mathematical formulation of “easy” and “hard” dataset splits
in question answering (Sugawara et al., 2018; Rondeau and Hazen, 2018; Sen and
Saffari, 2020). In irt-feas, this recapitulates the observation of Boyd-Graber and
Börschinger (2020) that annotation error can hinder effective leaderboards. irt
helps systematize these observations and diagnose dataset issues.

4.2.2 Inference
To estimate the latent parameters of our model, we use mean-field variational

inference (Jordan et al., 1999). In variational inference, we propose a distribution
over the latent variables, qφ(·), that approximates the true but intractable posterior
p(·). We then minimize the kl-divergence between these distributions, equivalent
to maximizing the evidence lower-bound (elbo) with respect to the variational
parameters.

In our case, qφ(·) is a mean-field distribution, which means it factorizes over
each of the latent variables (the product is over the n×m subject-item pairs)

qφ(θ,β,γ,µ, τ ) = q(µ)q(τ )
∏
i,j

q(θj)q(βi)q(γi)

Specifically, for our key latent variables z ∈ {θ,β,γ}, the associated variational dis-
tributions are of the form q(z) = N (uz, t

−1
z ). Recall that in the generative distribu-

tion, each latent z is drawn from a N (µz, τ
−1
z ) whose parameters are also latent vari-

ables; for these variables, we use the variational distributions q(µz) = N (uµz , t
−1
µz )

and q(τz) = Γ(aτz , bτz). We optimize the elbo with respect to the variational pa-
rameters

φ = {uz, tz,uµz , tµz ,aτz , bτz ,λ}

for all z using adam (Kingma and Ba, 2015).
With dad’s leaderboard irt model introduced, we next discuss how leader-

board subjects are statistically compared and alternative methods—such as using
irt parameters—to evaluate whether two models are truly different.

4.3 Ranking and Comparing Subjects

Fundamentally, the objective of comparative evaluations like leaderboards is
to decide whether model A is better than model B. A thread of nlp has rightfully
advocated for adding rigour to these decisions using statistics (Traub, 1997, Classical
Testing Theory) where the objective is to infer a true score T from the observed test
score X = T + E given a measurement error E, uniform across subjects. However,
in educational testing—a field measuring skill and knowledge in humans—irt is a
primary measurement instrument (Hambleton, 1991, p. 2). A major motivation for
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irt is that subjects of different skill have different errors. irt explicitly accounts
for the bandwidth-fidelity dilemma (McBride, 1976): items can either accurately
measure a narrow ability range (fidelity) or inaccurately measure large ability ranges
(bandwidth).6 This section and the next contrast methods for identifying the best
model and advocate for irt.

Implicit in nearly all leaderboard evaluations is ranking of models based on a
statistic such as the average accuracy. As we show in §4.4, naïve rankings are noisier
than irt rankings.

4.4 IRT for Leaderboards

Leaderboards should do two things: (1) reliably and efficiently rank better
models ahead of worse models (Tague-Sutcliffe, 1992; Voorhees, 2003a) and (2) guide
inspection of items and subjects (§4.5). The first ameliorates the unavoidable ran-
domness of finite evaluations while the second enables error analysis (Wu et al.,
2019) and model probing (Belinkov and Glass, 2019; Zhang et al., 2019). First we
verify that irt models accurately predict the responses of subjects (§4.4.2). Next, a
ranking stability analysis shows that irt has modestly better reliability than classi-
cal rankings (§4.3). Lastly, using irt to actively sample items for annotation yields
rankings with better correlation to the test data (§4.4.5).

4.4.1 Why a Linear Model Baseline
At first blush, the differences between irt and logistic regression are minimal,

but we include the comparison to address natural questions from the nlp commu-
nity: (1) do the idiosyncrasies of the irt formulation hurt accuracy? (2) should we
add features to better understand phenomena in the questions? (3) why not use
deep models?

The next section argues that both irt and logistic regression are accurate,
even without laboriously engineered task-specific features. Adding obvious features
such as item words (e.g., question) only minimally improves accuracy. We explic-
itly omit less interpretable deep models since we want to make leaderboards more
interpretable.

4.4.2 Response Prediction is Accurate
Just as educational testing researchers validate irt fit seeing if they predict

subject responses correctly (American Educational Research Association, 2014), we
validate how well dad predicts whether squad models get questions right.

We compare against a logistic regression linear model (lm) implemented with
Vowpal Wabbit (Agarwal et al., 2014). Since integrating hand-crafted features is
easy, we incorporate features derived from subject ids; item ids; functions of the
squad question, answer, and title,; and irt parameters (details in Appendix B.2).

6Estimation error of θ varies by position (§B.5).
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Figure 4.4: We compare each irt and linear model (lm) by how well they predict
subject responses. We focus on roc auc since predicting responses is an imbalanced
classification problem (most subjects are correct). Under that metric, all irt models
improve over the best lm, and the strongest lm ablation only uses irt features. That
textual features are predictive in the lm suggests they could improve future models.

As in irt, logistic regression predicts whether a subject correctly responds to an
item. Later, we discuss ways to integrate more features into irt (§4.9).

4.4.2.1 SQuaD Leaderboard Data
Experiments use data from the squad 2.0 leaderboard. Development data is

publicly available and test set responses were obtained from the organizers. There
are 161 development subjects, 115 test subjects, and 11,873 items (1.9 million total
pairs). Experiments that do not need the test responses use all the development
subjects; those that do use the smaller test subset.

4.4.2.2 Evaluation Scheme
Following prior work (Wu et al., 2020), we evaluate irt and linear models

by holding out 10% of responses and computing classification metrics.7 In squad,
predicting whether a response is correct is an imbalanced classification problem
(80.4% of responses in the development set are correct). Thus, we use roc auc,
macro F1, and accuracy.

4.4.2.3 IRT Response Prediction is Accurate
irt models that incorporate more priors into the generative story should be

better, but are they? We compare four irt models: irt-base, irt-disc, irt-feas, and
irt-vec (§4.2). The more sophisticated models are better and all improve over the
lm (Figure 4.4) and correlate well with other (Appendix B.3). To be clear, while
outperforming the lm is good, our goal was to validate that irt model are accurate;
later, we inspect model errors and identify annotation errors (§4.5).

7Everywhere else in the chapter, we train on all responses.
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Figure 4.5: Compared to the final ranking over a large test set, how well does
a small test set correlate? The left shows correlation between mutually exclusive
development set samples and the right between development samples and the full test
set. In both experiments (panes), ranking systems by irt ability is more stable—
across all sample sizes—than mean accuracy and thus more reliable (Kendall’s rank
correlation is higher). Bands show 95% confidence intervals of rank correlations
across ten trials per sample size.

4.4.2.4 What Model Features are Predictive?
Integrating additional features into Bayesian models is not trivial, so we in-

stead use the flexibility of linear models to identify useful features. Our leave-one-in
ablation compares features (Figure 4.4): the top ablations both use irt features,
further validating irt parameters. The subject and item identifier features are also
strongly predictive, but item is the stronger of the two. Text-based features are
weaker, but this suggests room for future work in better integrating them into irt
models (§4.9).

4.4.3 Ranking with IRT
Leaderboards should produce reliable subject rankings: can dad rank systems

even with a tiny test set? Thus, we compare the reliability of traditional average
accuracy (§4.3) to irt ability rankings. Our first experiment (§4.4.3.1) examines
the stability of existing items and subjects while the second (§4.4.5) investigates
stability of “new” evaluation data using various sampling strategies.

4.4.3.1 IRT Rankings Have Better Reliability
Rankings should be reliable within the same dataset (e.g., on dev set) and

generalize to similar datasets (e.g., with a test dataset). To test the first, we measure
the ranking stability of mutually exclusive samples of the development data (Buckley
and Voorhees, 2000). To test the second, we measure the correlation of between
development set sample rankings to test set rankings (Voorhees, 1998).
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Specifically, for a range of sample sizes8 we (1) sample two partitions of the
data, (2) compute the classical ranking9 and the irt ranking from a refit irt-
feas model, then (3) compute Kendall’s correlation (Kendall, 1938) between the
samples for each ranking (details in Appendix B.4). In both cases irt rankings
have higher correlation than classical rankings (Figure 4.5, left). Since the bene-
fit is strongest at low sample sizes, irt can improve the reliability of small-scale
evaluations.

The second experiment examines ranking generalization: irt yields more re-
liable measures of subject skill, implying a greater consistency in subject rankings
across evaluation settings. Figure 4.5 compares the development set sample rank-
ings computed above to rankings obtained using subjects’ test set responses (with
the same irt model).

Across all sample sizes, subjects’ irt ability estimated with the development
set has significant correlation with their test set ability. Crucially, this is better than
the corresponding classical metrics like accuracy, supporting our original motivation
for using irt.10

4.4.4 Statistical Significance of Difference in Kendall Tau Coefficients
While Figure 4.5 shows a consistent difference in correlation between ranking

methods, it is unclear whether this difference is statistically significant. We estimate
the statistical significance of the difference with bootstrap sampling (Efron, 1994).

Since the null case is no difference in correlation coefficients, we seek a symmet-
ric sampling distribution centered at zero that represents a realistic density function.
Each ranking stability experiment11 trial results in two lists of number pairs. The
lists correspond to subject scores on two datasets;12 each number pair is the subject’s
accuracy and irt score. To create the bootstrap distribution, we (1) sample with
replacement pairs from one list, (2) compute the correlation between the resampled
ranking and unused ranking when using accuracy versus irt score, and (3) compute
and store the irt correlation score minus the accuracy correlation score. We repeat
this process 1000 times for each of the 10 trials in the original experiment and ag-
gregate all the differences to build the bootstrap distribution. For each sample size
we compute the empirical P-Value on each trial which we show in box and whisker
plots (Figure 4.6). While individual P-values tend to be high (particularly for dev
to dev sampling), there is still a consistent trend across sample sizes.

8The sample size must be less than half the size of the development data so that we can obtain
two samples.

9For squad, ordering by mean exact match score.
10Since the maximum trial size was limited, we train one final model with the full data, see

Table B.3 in Appendix B.4.
11One experiment for development sample to development sample and one for development

sample to test set.
12In the first experiment, development set samples; in the second, a development set sample and

the full test set.
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Figure 4.6: P-values of the rank correlation difference for each sample size and trial
in Figure 4.5. The inherent noise in dev set sampling makes inferring significance
difficult (left); test set driven results (right) are more significant.

4.4.5 IRT Improves Cold Start Reliability
irt can also guides the construction of tests. Just as irt practitioners prepare

tests for humans, we too construct tests for machines. In educational testing, col-
lecting responses from humans is expensive; likewise, although questions are cheap
in search-based qa tasks (Nguyen et al., 2016; Kwiatkowski et al., 2019), annotating
answers is expensive. Likewise, “grading” machine dialog responses is expensive and
irt helps (Sedoc and Ungar, 2020). To emulate this setting, we use computerized
adaptive testing (Weiss and Kingsbury, 1984) to iteratively select squad items to
“annotate.”

As in human test preparation, we use existing annotations to infer item pa-
rameters and iteratively infer the ability of new subjects. This experiment splits m
subjects into a training group (80%) and a testing group (20%). The training group
represents subjects for which we have full item predictions and annotations; the test-
ing group represents a new group of subjects that we need to rank. To efficiently
rank, we should iteratively choose items to annotate that yield the most information
about the ranking if all the data were annotated.

This experiment compares how well several item selection strategies work. For
each selection method, we (1) choose a sample size, (2), sample from the development
set, (3) compute the ranking of subjects, and (4) compute Kendall’s rank correlation
(Figure 4.7).13

Which item selection strategies should we compare? As a baseline, we use
naïve random sampling. Like prior work, we compare selecting items with the
highest difficulty and the highest discriminability (Lalor et al., 2019) as well as the
sum of the two.14 We propose that items should be selected according to their Fisher
information content (Weiss, 1982)

Ii(θj) =
(p′ij)

2

pij(1− pij)
= γ2i pij(1− pij) (4.2)

13We compute correlations with the complete development set on ten trials to build 95% confi-
dence intervals.

14We train an irt-disc model to simplify sampling (e.g., avoiding a tradeoff between feasibility
and discriminability).
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Figure 4.7: Suppose we need to cold start, collect annotations for a new subject:
what order would most rapidly increase correlation to the test data? As we expect,
the correlations eventually converge, but with little data, irt has better correlation
than other methods. We suspect that the irt information underperforms early on
when the subject ability estimate is unstable.

as derived by Lord et al. (1968, p. 70).
Intuitively, if we do not yet know the true skill θj, we should pick items whose

expected response we are most uncertain about. Our uncertainty (entropy) is max-
imized when the likelihood of a correct response pij is the same as the likelihood of
an incorrect response 1 − pij, which corresponds to the maximal value of Ii(θj); it
is also sensible this value increases as discriminability γi increases.

To infer the maximally informative items, we estimate the ability θj of each
subject using the currently selected items, use the ability to compute the infor-
mation of each yet-to-be-annotated item for each subject, and then aggregate the
informativeness

Info(i) =
∑
j

Ii(θj) (4.3)

by item i summed over subjects j. This approach is similar to uncertainty sampling
and reduces to it for the irt-base model (Lewis and Gale, 1994). We initially seed
with the twenty-five most discriminative items (details in Appendix B.4).

Like computerized adaptive testing (Moreno et al., 1984), Figure 4.7 shows that
at lower sample sizes three of the irt sampling methods are better than random
sampling—difficulty does worse. The other irt methods have comparable correla-
tion. Thus, by using irt, dad can both improve rankings and guide annotation.
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Discriminability: 3.24 Difficulty: 3.86 Feasibility: 0 Mean Exact Match: 0
Wikipedia Page: Computational Complexity Theory
Question: In the determination of complexity classes, what are two examples of types
of Turing machines?
Official Answer: probabilistic Turing machines, non-deterministic Turing machines
Context: Many types of Turing machines are used to define complexity classes, such
as deterministic Turing machines, probabilistic Turing machines, non-deterministic
Turing machines, quantum Turing machines, symmetric Turing machines and alter-
nating Turing machines. They are all equally powerful in principle, but when resources
(such as time or space) are bounded, some of these may be more powerful than others.

Figure 4.8: This question is regarded as infeasible by the irt model. Upon further
inspection, the answer omits five acceptable answers, but more importantly does
not permit all combinations of Turing machines.

4.5 Qualitative Insights on Leaderboards

dad also helps qualitative analysis of items and subjects. First, irt identifies
overfitting and generalizes partitioning datasets by difficulty. Then we show that—
like in educational testing—irt identifies good and bad items.

4.5.1 Guiding Analysis with IRT
Several works curate easy and hard qa subsets based how many models answer

correctly (Rondeau and Hazen, 2018) or heuristics (Sugawara et al., 2018). irt can
create similar subsets using irt-feas, the best 1D model. Difficulty finds where
subjects improve while discriminability and feasibility can surface items that may
be invalid. For example, one low feasibility question (Figure 4.815) asks “what are
two examples of types of Turing machines?” which has two problems: (1) the answer
omits five types and (2) span-based evaluation precludes selecting non-contiguous
types.

After excluding items with negative discriminability—they are likely erroneous—
we sort items into bins. We break both difficulty and discriminability into four
bins—taking the 25th, 50th, and 75th percentiles—creating eight total bins. Then
we select representative squad subjects with their exact match (Figure 4.9). Let’s
examine a feasible item with positive difficulty and discriminability like “what re-
form was attempted following the Nice treaty?”16 In this case, the annotator’s span
is too long—resulting in almost no correct answers and a low fuzzy match score.17

In contrast, one highly discriminative question succeeds because there are multiple
plausible guesses to “who did the Normans team up with in Anatolia?”18 While

15Question ID 56e1b00ce3433e14004230a1
16A: “there was an attempt to reform the constitutional law of the eu and make it more trans-

parent.” (Appendix Figure B.2)
17For simplicity, we use squad’s dichotomous exact match; squad also has F1—a token-level

fuzzy match metric.
18Example with statistics in Appendix Figure B.3.
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Figure 4.9: We partition evaluation data by irt difficulty and discriminability with
accuracy in each quartile. Most improvements in high-accuracy systems come from
getting high-difficulty questions right. items with low discriminability (and thus
prone to annotation errors) are difficult for all subjects except the overfit args-
bert model. We include top-performing squad subjects, several notable subjects
(systems), and a pair from the bottom of the leaderboard.

both the Armenian state and Turkish forces are superficially plausible answers, only
Turkish forces is correct; nonetheless, some models are fooled. Using irt to guide
subject analysis is helpful; next, we test how efficient it is in identifying annotation
error.

4.5.2 Identifying Annotation Error
To test if irt can identify annotation error we inspect sixty squad develop-

ment set items. We select ten items from each of these groups: the most negative
discriminability, discriminability nearest to zero, the highest discriminability, the
least difficult, most difficult, and irt model errors. For each, we annotate whether
the item was correct, was “correct” yet flawed in some way, or simply wrong (Fig-
ure 4.10). Inter-annotator agreement between three authors on this three-way an-
notation with Krippendorff’s α (Krippendorff, 2004; Artstein and Poesio, 2008) is
0.344. Despite only modest agreement, just as in the development of education
tests, negative discriminability is predictive of bad items. When discriminability is
negative, then the probability of getting the answer right is higher when ability is
lower, which is undesirable: Ken consistently loses to Burt on those items. This
could identify bad items in evaluation sets for removal.

4.6 Related Work

This chapter draws together two primary threads: we use irt to understand
datasets, which has been applied to other nlp tasks, and apply it to improving
leaderboards. Finally, we explore how the insights of irt can improve not just the
analysis of test sets but to improve the construction of test sets.
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fied as “Wrong” with the explanation that the annotated answer indicates it is not
answerable, but the question actually is answerable. items with negative discrim-
inability or where irt’s prediction is wrong have a much higher rate of annotation
error (“Flawed” or “Wrong”). Using similar methodology, errors in datasets could be
more rapidly identified.

IRT in NLP irt is gaining traction in machine learning research (Martínez-
Plumed et al., 2016, 2019) where automated metrics can be misleading (Sedoc et al.,
2019): machine translation (Hopkins and May, 2013) and chatbot evaluation (Sedoc
and Ungar, 2020). Concurrent with our work, Vania et al. (2021) compare nlp
test sets with irt. Closest to our work in nlp is Otani et al. (2016), who rank
machine translation subjects and compute correlations with gold scores. Similarly,
Martínez-Plumed and Hernández-Orallo (2020) use irt on non-language ai video
game benchmarks. Just as we use irt to identify difficult or easy items, Lalor et al.
(2016) create challenge sets for textual entailment. We test irt as a way to guide
annotation, but it can also be used to train nlp models; for example, deep models
learn “easy” examples faster (Lalor et al., 2018) and maintain test accuracy when
training data is down-sampled with irt (Lalor et al., 2019).

Improving Leaderboards The rise of leaderboards in nlp has encouraged criti-
cal thought into improving them (Linzen, 2020), improving evaluation more broadly (Eger
et al., 2020), and thoughtful consideration of their influence on the direction of re-
search (Sculley et al., 2018; Dotan and Milli, 2020). dad aims to make leaderboard
yardsticks (Hernandez-Orallo, 2020) more reliable, interpretable, and part of curat-
ing the benchmark itself. In line with our reliability goal, just as statistical tests
should appear in publications (Dror et al., 2018; Dodge et al., 2019), they should
be “freebies” for leaderboard participants (Ethayarajh and Jurafsky, 2020). Alter-
natively, Hou et al. (2019) posit that leaderboards be automatically extracted from
publications. Aggregating multi-task (Wang et al., 2019b,a; Fisch et al., 2019) and
multi-metric benchmarks (Ma et al., 2021) is an open question which—although we
do not address—is one use for irt.

This chapter implicitly argues that leaderboards should be continually up-
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dated. As a (static) leaderboard ages, the task(s) become overfit (Recht et al.,
2019) which—although mitigable (Blum and Hardt, 2015; Anderson-Cook et al.,
2019)—is best solved by continually collecting new data (Kiela et al., 2021). Ide-
ally, these new data should challenge models through adversarial collection (Wallace
et al., 2019b; Nie et al., 2020) and other methods (Gardner et al., 2020a). However,
if making a too easy leaderboard harder is not possible, we should recognize that the
leaderboard has outlived its helpfulness and should be retired (Voorhees, 2000b).

Part of this chapter centers on alternate task efficacy rankings, but this naïvely
assumes that task efficacy is the sole use case of leaderboards. Indeed, focusing solely
these factors can mislead the public (Paullada et al., 2020), may not reflect hu-
man language capabilities (Schlangen, 2020), or even be ecologically valid (de Vries
et al., 2020). Leaderboards are also well positioned to provide incentive struc-
tures for participants that prioritize fairness (Bender and Friedman, 2018) and effi-
ciency (Strubell et al., 2019; Schwartz et al., 2020; Min et al., 2021) or incorporate
testing of specific capabilities (Ribeiro et al., 2020; Dunietz et al., 2020). To enable
these more nuanced analyses, leaderboards should accept runnable models rather
than static predictions (Ma et al., 2021).

Active Learning Beyond irt, the analysis of training dynamics and active learn-
ing (Settles, 2009) is helpful for actively sampling specific items or identifying low-
quality items (Brodley and Friedl, 1999). For example, Swayamdipta et al. (2020)
and Pleiss et al. (2020) propose alternative training dynamics-based methods for
identifying difficult items as well annotation errors. Even closer to goals, Rahman
et al. (2020) use active learning to build a test collection. Explicitly measuring how
effectively examples separate the best subject from the rest allows test set curators
to “focus on the bubble” (Boyd-Graber and Börschinger, 2020), prioritizing examples
most likely to reveal interesting distinctions between submitted systems.

Alternate Formulations irt is an example of convergent evolution of models
that predict subject action given an item. Ideal point models (Poole and Rosenthal,
2017) consider how a legislator (subject) will vote on a bill (item) and use a similar
mathematical formulation. The venerable elo model (Glickman and Jones, 1999)
and modern extensions (Herbrich et al., 2007) predict whether a player (subject)
will defeat an opponent (item) with, again, a similar mathematical model. Cer-
tain irt models can also be formulated as nonlinear mixed models (Rijmen et al.,
2003), where the item parameters are fixed effects and the latent subject parame-
ters are random effects. This allows for comparisons between irt models and other
mixed-effects models under a consistent framework. irt-base and irt-disc can be
formulated as nonlinear mixed models, and irt-feas can be formulated as a dis-
crete mixture model over items. As we discuss further in the next section, dad’s
application of irt can be further improved by adopting interpretable extensions of
these models.
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4.7 Conclusion

This chapter advocates incorporating decades of research in crafting education
tests to improve how we evaluate the capabilities of nlpmodels. We propose and
validate an alternate irt ranking method for leaderboard evaluations, show it can
guide annotation, detect annotation error, and naturally partition evaluation data.
Just as educators moved from classical testing to irt, the nlp community should
consider future evaluations with irt.

4.8 Limitations

Although there is much to gain through irt evaluation, there are limitations
which make it hard to implement. First, it requires access to item-level responses for
all examples for all subjects which are often only available to organizers. Second,
Urbano (2016) notes that sampling mutually exclusive subsets has drawbacks—
samples are not entirely independent. Lastly, our work is a proof of concept using
squad 2.0 as a test bed, and our results may not generalize.

4.9 Future Work

We see a few directions for future work which we outline here and describe
further in Chapter 7. First, this work validates irt’s usefulness for leaderboards,
but to fully realize its potential irt needs to be implemented in an existing or new
benchmark. Second, our irt models do not incorporate the item content (e.g., ques-
tion text) when predicting responses, but in principle could; Bayesian models with
metadata (Card et al., 2018) and ideal point models from political science (Poole
and Rosenthal, 1985) that incorporate bills and speeches do exactly this (Gerrish
and Blei, 2011; Nguyen et al., 2015; Kraft et al., 2016). Analogously, irt for leader-
boards can and should also incorporate text from passages, questions, and answers
to better model what makes questions difficult. Such a model can also predict which
characteristics would create discriminating or difficult items. Third, statistical test-
ing is strongly recommended in nlp (Dror et al., 2018; Dodge et al., 2019), and we
should investigate how irt based statistical tests differ (§B.5). Lastly, multidimen-
sional irt models to evaluate multiple skills could aid multi-task leaderboards like
mrqa (Fisch et al., 2019) and Dynaboard (Ma et al., 2021).

While this chapter leaves the dataset and format unchanged, the broader mes-
sage is that we should understand how question difficulty and discriminability affect
qa evaluations. In the next two chapters, we introduce a Manchester paradigm qa
format that—by construction—has more discriminative power (Chapter 5) and use
human-machine cooperative writing to create more challenging questions (Chap-
ter 6).
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Chapter 5: The Case for Incremental Question Answering Evaluation

You’ll rarely hear it acknowledged on Jeopardy! or Who Wants
to Be a Millionaire, but many of the elite winners on these shows
got their trivia training in high school and college quiz
bowl. . .When I took the written test at my Jeopardy!
audition. . . I felt like a runner who’d been training in high
altitude Mexico City, just to get his lungs in such superpowered
shape that events at lower elevations seemed like a piece of cake.

Brainiac: Adventures in the Curious, Competitive, Compulsive
World of Trivia Buffs

Ken Jennings (2006, p. 81)

In contrast with asking questions to learn (Chapter 3), scholastic trivia compe-
titions use questions to test knowledge and intelligence.1 In this way and in line with
the Manchester paradigm, trivia games are a variant of the Turing test since we ex-
pect that answering a set of questions as well as a human is a minimum bar towards
demonstrating human-like intelligence (Yampolskiy, 2013). In the previous chap-
ter, we considered a task (squad) where participants are scored dichotomously:2
they are either correct or wrong. A byproduct of this choice is that when subjects
are both correct or both wrong, we learn substantially less about their latent skill
(§4.4.5). Unfortunately, as Ray Hamel3 notes “the problem of gauging difficulty, of
making a question easy enough to be accessible, but tough enough so that listeners
still have to scratch their heads” (Jennings, 2006, p. 228) is challenging.

This chapter makes the case that the format used by the trivia game Quizbowl
(qb) better distinguishes between players (machine or human) of disparate skill
while incorporating dynamic elements that also make it fertile space for sequential
decision-making in qa.4 Beyond the format of qb, we demonstrate how collabora-

1This chapter is based on Rodriguez et al. (2019).
2squad’s fuzzy matching metrics are arguably a concession to annotation noise, rather than

genuine partial credit.
3Ray Hamel is a member of the Trivia Bowl Hall of Fame, estimates he has written over 40,000

trivia questions, and has written over 750 (trivia) crossword puzzles for Games, The New York
Times, The Los Angeles Times, Newsday, Dell Champion Crosswords, and CrosSynergy (Hamel,
2000).

4This work substantially expands the number questions compared to Boyd-Graber et al. (2012)
and player-question records compared to He et al. (2016b). We also make the setting significantly
harder by not restricting questions to only the most frequently asked about answer (1K versus 24K)
as in Iyyer et al. (2015). This work also incorporates the exhibition match from Boyd-Graber et al.
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At its premiere, the librettist of this opera portrayed a character who asks
for a glass of wine with his dying wish. That character in this opera is
instructed to ring some bells to summon his love. At its beginning, a man
who claims to have killed a serpent has a padlock put on his mouth because
of his lying. The plot of this opera concerns a series of tests that Tamino
must undergo to rescue Tamina from Sorastro. For 10 points, name this
Wolfgang Mozart opera titled for an enchanted woodwind instrument.
Answer: The Magic Flute

Figure 5.1: qb is a trivia game where questions begin with clues that are initially
difficult, but become progressively easier until a giveaway at the end of the question.
Players answer as soon as they know the answer so as a result the earlier they answer
the more knowledgeable they are. For example, answering after the first sentence
indicates the player recognizes the librettist (Emanual Schikaneder) and knows that
they played Papageno in The Magic Flute (die Zauberflöte). Answering at the end
of the question only requires surface knowledge of Mozart’s opera works.

tion with a thriving and enthusiastic community provides natural ways to engage
with and educate the public about nlp research; Chapter 6 takes this a step farther
by combining the efforts of humans and machines to author better qa datasets.

5.1 An Introduction to Quizbowl

Answering questions is an important skill for both humans and computers.
Exams form the foundation of educational systems and—for many societies—of the
civil system (Fukuyama, 1995). Computers answering questions in the Turing test
is the standard definition of artificial intelligence (Turing, 1950). But another more
trivial form of question answering is more pervasive in popular culture.

Trivia games are pervasive and popular: from quizzing in India (Roy, 2016)
to “What? Where? When?” in Russia (Korin, 2002) to “Who wants to be a Mil-
lionaire” (Clarke et al., 2001; Lam et al., 2003), trivia encourages people to acquire,
recall, and reason over facts. For computers, Yampolskiy (2013) argues that these
skills are ai-complete: solve question answering and you have solved ai generally.
A central idea in this chapter is that the intense research in question answering
would benefit in adopting the innovations and lessons learned from human trivia
competition, as embodied in a trivia format called Quizbowl (qb).

In qb, questions are posed incrementally—word by word—and players must
interrupt the question when they know the answer (Figure 5.1). “Speed is therefore
crucial” since it rewards players who can answer with less information than their
opponents (Jennings, 2006). This is not just a gimmick to separate it from other
question answering formats: players must simultaneously think about what is the

(2017). Finally, we create a new evaluation procedure that better estimates how models fare in
the real-world versus human opponents.
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most likely answer and after every word decide whether it is better to answer or wait
for more information. To succeed, players and machines alike must answer ques-
tions, maintain accurate estimates of their confidence, and factor their opponents’
abilities. The combination of these skills makes qb challenging for machine learning
algorithms.

A dedicated and skilled community forged qb over decades (§5.2), creating
a diverse and large dataset (§5.3). We refer to this dataset as the qanta dataset
because (in our opinion) Question Answering is Not a Trivial Activity.5

Playing qb requires deciding what to answer (§5.5) and when to answer (§5.6).
Our final contribution is a framework that combines independent systems for each
of these sub-tasks. Despite its simplicity, our implementation of this framework
is competitive with the best players. Section 5.8 showcases qb as a platform for
simultaneously advancing research and educating the public about the limits of
machine learning through live human–computer competitions. Finally, we discuss
ongoing and future research using trivia questions to build machines that are as
capable of reasoning and connecting facts as humans.

5.2 Why Quizbowl?

When discussing machine learning and trivia, the elephant in the room is
always ibm’s tour-de-force match (Ferrucci et al., 2010) against Ken Jennings and
Brad Rutter on Jeopardy! Rather than ignore the obvious comparisons, we take
this on directly and use the well-known Jeopardy! context—which we gratefully
acknowledge as making our own work possible—as a point of comparison, as qb is a
better differentiator of skill between participants, be they human or machine (§5.2.1
and §5.2.2). Throughout, we discuss the history of trivia to show that the hard-
won lessons humans learned about question answering transfer to machine question
answering.

The qa format categorization of Gardner et al. (2020b) names three tasks
where framing the problem as qa is useful : (1) filling human information needs, (2)
qa as annotation or probe, and (3) as a transfer mechanism.6 Like searchqa (Dunn
et al., 2017, Jeopardy!), qb does not explicitly probe specific linguistic phenomena;
it uses language to ask what humans know. In contrast to questions posed to search
engines or digital assistants (Nguyen et al., 2016; Kwiatkowski et al., 2019), qb is
less ambiguous: question writers ensure that the descriptions uniquely identify one
and only one answer, a non-trivial goal (Voorhees and Tice, 2000). Thus, although
the goals in qb are superficially similar to open domain information-seeking, they
are distinct and align with the Manchester paradigm (§2.1.2).

The qb format is compelling and consistent because of its evolution (Fig-
ure 5.2) over its fifty-year history.7 Many of the challenges the nlp community

5Dataset available at http://datasets.qanta.org.
6The Cranfield and Manchester paradigms (§2.1.1 and §2.1.2) are related to (1) and (2).
7After returning from World War II and inspired by uso morale-building activities, Canadian

Don Reid sketched out the format with the first host Allen Ludden. After a radio premiere
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1953 College Bowl
On Radio

1958 Van Doren
Scandal

1962 University
Challenge

1965 Pub Quizzes
Begin

1977 College Bowl
In ACUI

1979 Trivial
Pursuit

Birth of
Modern Trivia Popularization

1991 ACF Founded

1996 NAQT, PACE
Founded

2009 NAQT takes
Over ACUI

Professionalization

Figure 5.2: Trivia has gone from a laid-back pastime to an organized, semi-
professional competition format. The qb framework, in particular, which arose
from College Bowl (us) and University Challenge (uk) emphasizes fairness and the
ability to discover the better question answerer. As organizations such as the Aca-
demic Competition Federation and National Academic Quiz Tournaments emerged,
the format has focused on academic, well-run tournaments.

faces in collecting good question answering datasets at scale (Hermann et al., 2015)
were first encountered by trivia aficionados. For example, avoiding predictive yet
useless patterns in data (Jia and Liang, 2017; Kaushik et al., 2020); players do not
like re-used clues making questions trivially easy. Similarly, players prize the novelty
of questions which is often created by

tak[ing] two elements you wouldn’t have thought had a commonality and
put[ing] them together and then you go, ‘Oh, yea, that’s pretty cool,
there’s a connection there that nobody’s seen.’ (Ray Hamel (Jennings,
2006))

Creating multi-hop reasoning questions is a shared goal with HotPotQA (Yang et al.,
2018b), but it has been challenging to write questions that actually require it (Min
et al., 2019). We distill these lessons, describe the craft of question writing that
makes qb a compelling question answering task (§5.2.3), and enumerate some nlp
challenges required to truly solve qb (§5.2.4). We conclude by framing qb as a
hybrid task between question answering and sequential decision-making (§5.2.5).

5.2.1 What is a Buzzer Race?
The scapegoat for every Jeopardy! loser and the foundation of every Jeopardy!

winner is the buzzer (Harris, 2006). A buzzer is a small handheld device that players

in 1953, College Bowl moved to television in 1959 and became the first television show to win a
Peabody (Baber, 2015). The format established many careers: the future president of the National
Broadcasting Corporation (nbc), Grant Tinker, served as the game’s first scorekeeper (the newly
designed game and its scoring was so confusing that Allen Ludden often had to ad lib to let Tinker
catch up). The format was intriguing enough that Granada studios copied it—initially without
permission—into what became the uk cultural touchstone University Challenge (Taylor et al.,
2012), establishing the career of Bamber Gascoigne.
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press to signal that they can correctly respond to a clue. The fundamental difference
between Jeopardy! and qb—and what makes qb more suitable for research—is how
clues are revealed and how players use the buzzer.

Jeopardy! is a television show and uses the buzzer to introduce uncertainty,
randomness, and thus excitement for the viewer at home.8 In Jeopardy!, players
can only use the buzzer when the moderator has finished reading the question.9
If players use the buzzer before the question is finished, they are locked out and
prevented from answering the question for a fraction of a second (an eternity in the
fast-paced game of Jeopardy!).

This advantaged Watson in its match against two opponents with feeble human
thumbs and reflexes, as Jeopardy! uses the buzzer to determine who among those
who know the answer has the fastest reflexes.10 While Watson gets an electronic
signal when it was allowed to buzz, the two humans watch for a light next to the
Jeopardy! game board to know when to buzz. Thus, Watson—an electronic buzzing
machine—snags the first choice of questions, while the two humans fight over the
scraps. In Jeopardy! reflexes are almost as important as knowledge. Next we show
how the structure of qb questions and its use of a buzzer rewards depth of knowledge
rather than reflexes.

5.2.2 Pyramidality and Buzzers
In contrast, qb is a game honed by trivia enthusiasts which uses buzzers as a

tool to determine who knows the most about a subject. This is possible because the
questions are interruptable. Unlike Jeopardy!, players can interrupt the questions
when they know the answer (recall questions are multi-sentence in qb). This would
make for bad television (people like to play along at home and cannot when they
cannot hear the whole question), but makes for a better trivia game that also requires
decision-making under uncertainty.

This alone is insufficient however; if an easy clue appears early in the ques-
tion then knowing hard clues later in the question is irrelevant. Questions that
can be answered with only a fraction of their input are a bad foundation for re-
search (Sugawara et al., 2018; Feng et al., 2019). qb addresses this problem by
structuring questions pyramidally. In pyramidal questions, clues are incorporated
so that harder, more obscure information comes first in the question, and easier,
more obvious information comes at the end of the question. Thus, when a player
answers before their opponents, they are more knowledgeable than their opponents.

This also makes qb an attractive machine learning research domain. The
8As Jennings (2006) notes about qb, “certainly it’s hard to play along at home with a game

where the questions can be interrupted after the moderator has only read a few syllables.”
9In Jeopardy! terminology is reversed so that a moderator reads clues termed answers to which

players must supply the correct question. To avoid confusion, we follow standard terminology.
10In a Ken Jennings interview with npr (Malone, 2019), the host Kenny Malone summarized it

well as “To some degree, Jeopardy! is kind of a video game, and a crappy video game where it’s,
like, light goes on, press button—that’s it.” Ken Jennings agreed, but characterized it as “beautiful
art and not a really crappy video game”.
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giveaways are often easy for computers too: they are prominent on Wikipedia pages
and have appeared in many questions. Thus, it is easy for computers to answer most
questions at some point : qb is not an impossibly difficult problem. The challenge
then becomes to answer the questions earlier, using more obscure information and
higher-order reasoning.

Humans who play qb have the same yearning; they can answer most of the
questions, but they want to deepen their knowledge to buzz in just a little earlier.
They keep practicing, playing questions and going to tournaments to slowly build
skill and knowledge. qb is engineered for this to be a rewarding experience.

The same striving can motivate researchers: it does not take much to buzz
in a word earlier. As small incremental improvements accumulate, we can have
more robust, comprehensive question answering systems. And because qb has a
consistent evaluation framework, it is easy to see whose hard work has paid off.

Thus, the form of qb questions—the product of decades of refining how to
measure the processing and retrieval of information of humans—can also compare
machines’ question answering ability. We next describe the cultural norms of ques-
tion writing in the qb community that contribute to making it a challenging task
for humans and machines alike.

5.2.3 The Craft of Question Writing
The goal of qb is to reward “real” knowledge. This goal is the product of a long

history that has resulted in community norms that have evolved the competition into
a thriving, carefully designed trivia ecosystem. By adopting these conventions, ma-
chine learning can benefit from the best practices for question answering evaluation
without repeating the same mistakes.

Every year, question writers in the community focus on creating high qual-
ity questions that are novel and pyramidal. Experts write thousands of questions
each year.11 To maintain the quality and integrity of competition, the commu-
nity enforces rules consistent with machine learning’s question for generalization
as described by Boyd-Graber and Börschinger (2020): avoiding ambiguity, ensur-
ing correctness, eschewing previously used clues, and allowing for fair comparisons
between teams (Lujan and Teitler, 2003; Vinokurov; Maddipoti) of 10,000 middle
school students, 40,000 high school students, and 3,200 college students (National
Academic Quiz Tournaments, 2020). At the same time, in preparation for tourna-
ments students study questions from previous years.

These dueling groups—players and writers—create a factual arms race that
is the foundation for the quality of qb questions. Aligning annotators’ motiva-
tions (von Ahn, 2006)—such as playing a game—with the goals of the data collec-
tion improves the quality and quantity of data. A similar arms race between dataset

11Regional competition questions are written by participants; championship competition ques-
tions are written by professionals hired by either the Academic Competition Federation (acf),
National Academic Quiz Tournaments (naqt), or the Partnership for Academic Competition Ex-
cellence (pace). While the exact organizational structure varies, initial draft questions are vetted
and edited by domain experts.
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exploiters (attackers) and those seeking to make datasets more robust (defenders)
exists in other machine learning domains like computer vision (Carlini and Wagner,
2017; Hendrycks et al., 2021) and Build-It, Break-It, (Fix-It) style tasks (Ettinger
et al., 2017; Thorne et al., 2019; Dinan et al., 2019a; Nie et al., 2020).

In qb, answers are uniquely identifiable named entities such as—but not lim-
ited to—people, places, events, and literary works. These answers are “typified by a
noun phrase” as in Kupiec (1993) and later in the trec qa track (Voorhees, 2003a).
Similar answer types are also used by other factoid question answering datasets
such as SimpleQuestions (Bordes et al., 2015), SearchQA (Dunn et al., 2017), Triv-
iaQA (Joshi et al., 2017), and NaturalQuestions’ short answers (Kwiatkowski et al.,
2019). In its full generality, qb is an Open Domain qa task (Chen et al., 2017; Chen
and Yih, 2020). However, since the vast majority of answers correspond to one of
the six million entities in Wikipedia (§5.3.4),12 we approximate the open-domain
setting by defining this as our source of answers (Section 5.9.1 reframes this in read-
ing comprehension’s span selection format). Like the ontology of ImageNet (Deng
et al., 2009), no formalism is perfect, but it enables automatic answer evaluation
and linking to a knowledge base. In qb though, the challenge is not in framing an
answer, it is in answering at the earliest possible moment.

The pyramidal construction of questions—combined with incrementality—
makes qb a more fair and granular comparison. For example, the first sentence
of Figure 5.1—also known as the lead in—while obscure, uniquely identifies a single
opera. Questions that begin misleadingly are scorned and derided in online discus-
sions as “neg bait”;13 Thus, writers ensure that all clues are uniquely identifying even
at the start.

The entirety of questions are carefully crafted, not just the lead-in. Middle
clues reward knowledge but cannot be too easy: frequent clues in questions or clues
prominent in the subject’s Wikipedia page are considered “stock” and should be
reserved for the end. These same insights have been embraced by machine learning
in the guise of adversarial methods (Jia and Liang, 2017) to eschewing superficial
pattern matching. In contrast, the final giveaway clue should be direct and well-
known enough; someone with even a passing knowledge of The Magic Flute would
be able to answer.

This is the product of a complicated and nuanced social dynamic in the qb
community. Top teams and novice teams often play on the same questions; questions
are—in part—meant to teach (Gall, 1970) so are best when they are fun and fair
for all. The pyramidal structure ensures that top teams use their deep knowledge
and quick thinking to buzz on the very first clues, but novice teams are entertained

12A minority of answers cannot be mapped. Some answers do not have a page because Wikipedia
is incomplete (e.g., not all book characters have Wikipedia pages). Other entities are excluded
by Wikipedia editorial decisions: they lack notability, are combined with other entities(e.g.,
Gargantua and Pantagruel and Romulus and Remus). Other abstract answers will likely never
have Wikipedia pages (women with one leg, ways Sean Bean has died in films).

13“Negging” refers to interrupting a question with a wrong answer; while wrong answers do
happen, a response with a valid chain of reasoning should be accepted. Only poorly written
questions admit multiple viable answers.
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and learning until they get to an accessible clue. Just about everyone answers all
questions (it is considered a failure of the question writer if the question “goes dead”
without an answer).

qb is not just used to test knowledge; it also helps discover new information
and as a result diversifies questions (“oh, I did not know the connection between the
band the Monkees and correction fluid!”).14 While most players will not recognize the
first clue (otherwise the question would not be pyramidal), it should be interesting
and connect to things the player would care about. For example, in our Magic Flute
question, we learn that the librettist appeared in the premiere, a neat bit of trivia
that we can tuck away once we learn the answer.

These norms have established qb questions as a framework to both test and
educate human players. Our thesis is that these same properties can also train and
evaluate machine question answering systems. Next, we highlight the nlp and ml
challenges in qb.

5.2.4 Quizbowl for Natural Language Processing Research
We return to Figure 5.1, which exemplifies nlp challenges common to many

qb questions. We already discussed (pyramidality): each sentence uniquely iden-
tifies the answer but each is easier than the last. The most knowledgable answers
earlier and “wins” the question. But what makes the question difficult apart from
obscurity (Boyce-Jacino and DeDeo, 2018)? Answering questions early is signifi-
cantly easier if machines can resolve coreference (Ng, 2010) and entity linking (Shen
et al., 2015).

First, the computer should recognize “the librettist” as Schikaneder, whose
name never appears in the question. This special case of entity linking to knowledge
bases is sometimes called Wikification (Cheng and Roth, 2013; Roth et al., 2014).
The computer must recognize that “the librettist” refers to a specific person (men-
tion detection), recognize that it is relevant to the question, and then connect it a
knowledge base (entity linking).

In addition to linking to entities outside the question, another challenge is
connecting coreferences within a question. The interplay between coreference and
question answering is well known (Stuckardt, 2003), but Guha et al. (2015) argue
that qb coreference is particularly challenging: referring expressions are longer and
oblique, world knowledge is needed, and entities are named after other referring ex-
pressions. Take the character Tamino (Figure 5.1): while he is eventually mentioned
by name, it is not until after he has been referred to obliquely (“a man who claims
to have killed a serpent”). The character Papageno (portrayed by Schikaneder) is
even worse; while referred to twice (“character who asks for a glass of wine”, “That
character”), Papageno is never mentioned by name. To fully solve the question, a
model may have to solve a difficult coreference problem and link the reference to
Papageno and Schikaneder.

14Bette Nesmith Graham, the mother of Monkees band member Michael Nesmith, invented
correction fluid in 1956.
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These inferences, like in the clue about “the librettist”, are often called higher-
order reasoning since they require creating and combining inference rules to derive
conclusions about multiple pieces of information (Lin and Pantel, 2001). Questions
that require only a single lookup in a knowledge base or a single ir query are un-
interesting for both humans and computers; thus, they are shunned for qb lead-in
clues. Indeed, the first sentences in qb questions are the most difficult clues for hu-
mans and computers because they often incorporate surprising, quirky relationships
that require skill and reasoning to recognize and disentangle. Interest in multi-hop
question answering led to the creation WikiHop through templates (Welbl et al.,
2018) and HotPotQA through crowdsourcing (Yang et al., 2018b). In contrast to
these artificially or crowdsourced created datasets, qb questions focus on links that
experts view as relevant and important.

Finally, even the final clue (called a “giveaway” because it’s so easy for humans)
could pose issues for a computer. Connecting “enchanted woodwind instrument” to
The Magic Flute requires solving wordplay. While not all questions have all of these
features, these features are typical of qb questions and showcase their richness.

Crowdsourced datasets like OpenBooksQA (Mihaylov et al., 2018) and Com-
monSenseQA (Talmor et al., 2019) have artifacts that algorithms can game (Geva
et al., 2019): they find the right answer for silly reasons. For example, answering
correctly with just a handful of words from a squad question (Feng et al., 2018),
none of a bAbI question (Kaushik and Lipton, 2018), or the image in a question
about an image (Goyal et al., 2017). Although the qanta dataset and other “nat-
urally occurring” data likely do contain machine exploitable patterns, they do not
face the same quality issues since the author’s motivation is intrinsic: to write an
entertaining and educational question as in qb.

5.2.5 Quizbowl for Machine Learning Research
While answering questions showcases the nlp challenges, deciding when to

answer showcases the ml challenges related to decision theory (Raiffa, 1968). As in
games like Poker (Brown and Sandholm, 2019), qb players have incomplete infor-
mation: they do not know when their opponent will answer, do not know what clues
will be revealed next, or if they will know the next clues. In our buzzer model, the
qa model output is but one piece of information used to make the decision—under
uncertainty—of when to buzz in. Since a decision must be made at every time step
(word), we call this an incremental classification task.

We formalize the incremental classification task as a Markov Decision Pro-
cess (Zubek and Dietterich, 2002, mdp). The actions in this mdp correspond to
what a player can do in a real game: click the buzzer and provide their current best
answer or wait (one more word) for more information. The non-terminal states in
the state space are parameterized by the text of the question revealed up to the
current time step, the player’s current best guess, and which player (if any) has
already buzzed incorrectly. Rewards are only given at terminal states and transi-
tions to those states are determined by which player correctly answered first. Ad-
ditionally, we treat the opponent as a component of the environment as opposed
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to another agent in the game.15 This task—the buzzing task—has connections to
work in model confidence calibration offline (Yu et al., 2011; Nguyen and O’Connor,
2015) as well as online (Kuleshov and Ermon, 2017), cost-sensitive learning (Elkan,
2001), acquisition of features with a budget (Lizotte et al., 2003), and incremental
classification (Melville et al., 2005).

For humans, effective qb play involves maintaining a correctness estimate of
their best answer, weighing the cost and benefits of answering now versus waiting,
and making buzzing decisions from this information. Naively, one might assume that
model calibration is as simple as examining the probability output by the (neural)
qa system, but neural models are often especially poorly calibrated (Guo et al.,
2017) and calibrations often fail to generalize to out of domain test data (Kamath
et al., 2020). Since qb training data spans many years, models must also contend
with domain shift (Ovadia et al., 2019). Model calibration is naturally related to
deciding when to buzz—also known as answer triggering in qa and information
retrieval (Voorhees, 2001; Yang et al., 2015).

Unlike standard answer triggering though, in qb the expected costs and ben-
efits are continually changing. Specifically, there are costs for obtaining new in-
formation (seeing more words) and costs for misclassifications (guessing incorrectly
or waiting too long). This parallels the setting where doctors iteratively conduct
medical tests until they are confident in a patient’s diagnosis (Zubek and Dietterich,
2002; Chai et al., 2004).

Although this can be framed as reinforcement learning, we instead frame
buzzing in Section 5.6 as incremental classification as in Trapeznikov and Saligrama
(2013). In this framing, a binary classifier at each time step determines when to stop
obtaining new information and render the decision of the underlying (qa) model. As
Trapeznikov and Saligrama (2013) note, evaluation in this scenario is conceptually
simple: compare the costs incurred to benefits gained.

Evaluation We evaluate the performance of our systems through a combination
of standalone comparisons (Section 5.7.1) and simulated qb matches (Section 5.7.3).
For standalone evaluation we incrementally feed systems new words and record their
responses. We then calculate accuracy for each position in the question (e.g., after
the first sentence, halfway through the question, and at the end). While standalone
evaluations are useful for developing systems, the best way to compare systems and
humans is with evaluations that mimic qb tournaments.

A recurring theme is our mutually beneficial collaboration with the qb commu-
nity: host outreach exhibitions (Section 5.8), annotate data, play with and against
our systems (Section 5.10.2), and collect the qanta dataset. This community cre-
ated this rigorous format for question answering over decades and continues to help
understand and measure the question answering abilities of machines.

15This is not precisely true in our live exhibition matches; although we treat the opponent as
part of the environment, our human opponents do not and usually adapt to how our system plays.
For instance, it initially had difficulty with pop culture questions.
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5.3 The QANTA Dataset

This section describes the qanta dataset from the qb community (§5.3.1).
The over 100,000 human-authored, English questions from qb trivia tournaments
(§5.3.2) allows systems to learn what to answer. More uniquely, 3.9 million filtered
records of humans playing qb online (§5.3.3) allows systems learn when to “buzz in”
against opponents (§5.4).

5.3.1 Sources of Quizbowl Questions
The qb community maintains and curates several public databases of questions

spanning 1997 to today.16 On average, 10,000 questions are written every year. Our
dataset has 119,247 questions with over 650 thousand sentences and 11.4 million
tokens.

To help players practice and to build a dataset showing how humans play, we
built the first website for playing qb online (Figure 5.3a). After initial popularity, we
shut down the site; however, enterprising members of the qb community resurrected
and improved the application. 89,477 players used the successor (Figure 5.3b) and
have practiced 5.1 million times on 131,075 unique questions. A filtered17 subset of
3.9 million player records forms the second component of our dataset, which we call
gameplay data.

5.3.2 QANTA Questions
Table 5.1 compares qa datasets written by humans. Because often each qb

sentence has enough information for players to answer, each qanta instance can
be broken into four to six pseudo sentence-answer pairs. Although our dataset does
not have the most questions, it is significantly larger in the number of sentences and
tokens.

In addition to qanta having more sentences, questions are longer (Figure 5.4),
especially compared to crowd-sourced datasets. As a side effect of both being longer
and not crowdsourced, qb sentences are syntactically complex and topically diverse
(Figure 5.5).

Topical Diversity of Questions Creating diverse datasets is a shared goal be-
tween researchers developing nlp resources and organizers of qb tournaments. qb
questions are syntactically diverse with dense coreference (Guha et al., 2015) and
cover a wide range of topics. Diversity takes the form of questions that reflect the
topical, temporal, and geographical breadth of a classical liberal education. For ex-
ample, the Academic Competition Federation mandates that literature cover Amer-
ican, British, European, and world literature (Vinokurov et al., 2014). Moreover,

16Questions in were obtained (with permission) from http://quizdb.org and http://
protobowl.com.

17We include only a player’s first play on a question and exclude players with less than twenty
questions.
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One is Monte Carlo if at least half of the possible results for all x in a language it says 
"yes" and "no" otherwise. One is called unambiguous if for any x there is at most one 
accepting computation. One is called oblivious if the position of the cursor at the t-th step 
depends only on the t and the length of the input. One is non-deterministic if its sets of 
next states may contain more than one element. For ten points, identify this model of 
computation named for

Text Reveal Speed

Question from ACF Nationals 2007 (Berkeley)

Don't show questions from this packet again

Don't show questions from this tournament again

Answer (or press space)

Answering questions as: Jordan

Correct!
People who answered before you did:
Kevin
Parag
Irene

People who answered after you did:
Cecilia
Jim

Incorrect Answers:
Turntable
Toaster
Computer
Poland
Algorithm

(a) Our 2012 interface was the first way to play qb online.

(b) The qb interface for collecting most of our gameplay records. It improved over our
own through features like real-time competitive play and chatrooms.

Figure 5.3: Our interface and a popular modern interface for playing qb online.
Both interfaces reveal questions word-by-word until a player interrupts the system
and makes a guess.

authors must “vary questions across time periods”—with no more than one post 1990
literature—and questions must “span a variety of answers such as authors, novels,
poems, criticism, essays, etc.” There are similarly detailed proscriptions for the rest
of the distribution.

Figure 5.5 shows the category and sub-category distribution over areas such as
history, literature, science, and fine arts. Taken together, qb is a topically diverse
dataset across broad categories and finer-grained sub-categories. This diversity con-
trasts with a sample of 150 questions from NaturalQuestions (Kwiatkowski et al.,
2019)18 which indicates that questions are predominantly about Pop Culture (40%),
History (19%), and Science (15%); see Appendix C.2 for complete results. This em-
phasizes that to do well, players and systems need to have both breadth and depth
of knowledge.

18The authors annotated 150 questions from the development set using the same categories as
qb.
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Dataset QA Pairs Tokens

SimpleQuestions (Bordes et al., 2015) 100K .614M
triviaqa (Joshi et al., 2017) 95K 1.21M
squad 1.0 (Rajpurkar et al., 2016) 100K .988M
searchqa (Jeopardy!) (Dunn et al., 2017) 216K 4.08M

qanta 2012 (Boyd-Graber et al., 2012) 47,610 / 7,949 1,073,085
qanta 2014 (Iyyer et al., 2014) 163,667 / 30,658 4,009,059
qanta 2018 (This Work) 650K / 120K 11.4M

Table 5.1: The qanta dataset is larger than most question answering datasets
in qa pairs (120K). However, for most qb instances each sentence in a question
can be considered a qa pair so the true size of the dataset is closer to 650K QA
pairs. In Section 5.5 using sentence level qa pairs for training greatly improves
model accuracy. The qanta dataset has more tokens than all other qa datasets.
Statistics for qanta 2012 and 2013 only include publicly available data.

Answer Entity Type Diversity qb questions are also diverse in the kinds of en-
tities that appear as answers (25K entities in the training data). A dataset which is
topically diverse, but only asks about people is not ideal. Using the Wikidata knowl-
edge graph we obtain the type of each answer and plot frequencies in Figure 5.6.
Most questions ask about people (human), but with a broad diversity among other
types.

These two breakdowns show that qb is topically and answer-wise diverse.
To qb aficionados this is unsurprising; the primary educational goal of qb is to
encourage students to improve their mastery over wide ranges of knowledge. We
now turn to details about the gameplay dataset.

5.3.3 Gameplay Records: Recording Humans Playing Quizbowl Online
Like the 2002 trec qa track (Voorhees, 2004), squad 2.0 (Rajpurkar et al.,

2018), and nq (Kwiatkowski et al., 2019), deciding when not to answer is crucial to
playing qb. Unlike these tasks though, deciding when to answer is not just model
calibration or triggering, but also should reflect the opponent’s behavior (Billings
et al., 1998). To address this, we use gameplay data (Table 5.2) which contain
records of quizbowlers playing questions from prior tournaments: words in each
question were revealed one-by-one until the player guessed the question’s answer.
We use these records as (1) training data so that models can learn to imitate an
oracle buzzing policy (Coates et al., 2008; Ross and Bagnell, 2010; Ross et al., 2011)
and (2) as human baselines for offline evaluations (§5.7).

Like Mandel et al. (2014), gameplay records both simulate humans for training
and evaluating policies. To simulate play against a human, we see which agent—
human or machine—first switches from the wait action to the buzz action. For
example, in Table 5.2 the user correctly guessed “Atlanta” at word forty-seven. If
an agent played against this player they would need to answer correctly before word
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Figure 5.4: Size of question answering datasets. Questions in the qanta dataset
have longer sentences than any other dataset. The instances from SimpleQuestions,
SQuAD, and triviaqa are comparatively short, which makes it less likely that they
are as diverse as qb or Jeopardy!. For each dataset, we compare the lengths of
questions rather than paired context paragraphs; to avoid the histogram being overly
skewed we remove the top 5% of examples by length from each dataset.

forty-seven to win. In all but one outcome, replaying the human record exactly
recreates a live face-off. When a machine incorrectly buzzes first we lack what the
human would ultimately guess, so we assume their guess would have been correct
since skilled players almost always answer correctly by the end of the question.
During training, these data help agents learn optimal buzzing policies based on their
own uncertainty, the questions, and their opponents’ history (He et al., 2016b).19

With this data, we compute how models would fare against human players
individually, players partitioned by skill, and in expectation (§5.7.1). In contrast to
this strategy, crowdsourced tasks (e.g., squad) often use the accuracy of a single
annotator to represent human performance, but this is problematic as it collapses
the distribution of human ability to a single crowd-worker and does not accurately
reflect a task’s upper bound compared to multiple annotation (Nangia and Bowman,
2019; Kwiatkowski et al., 2019). In the gameplay data, we have ample data with
which to robustly estimate average and sub-group human skill; for example, 90,611 of
the 131,075 questions have been played at least five times. This wealth of gameplay
data is one aspect of qb’s strength for comparing humans and machines.

An additional aspect unique to trivia games is that participants are intrinsi-
cally motivated experts. Compensation—i.e., extrinsic motivation—in crowdsourc-

19This work significantly expands the number of player-question records. We also make the
setting significantly harder by not restricting questions to only the most frequently asked about
answers (1K versus 24K). Finally, we create a new evaluation procedure (§5.7.1) that better esti-
mates how models fare in the real-world versus human players. The first version of the gameplay
dataset and models was introduced in:
He He, Jordan Boyd-Graber, and Hal Daumé III. Opponent Modeling in Deep Reinforce-
ment Learning. International Conference on Machine Learning, 2016.
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Figure 5.5: Questions in qb cover most if not all academic topics taught in school
such as history, literature, science, the fine arts, and social sciences. Even within a
single category, questions cover a range of topics. Topically, the dataset is biased
towards American and European topics in literature and history.

ing is notoriously difficult. If they feel underpaid, workers do not give their best
effort (Gneezy and Rustichini, 2000), and increasing pay does not always translate to
quality (Mason and Watts, 2009). In light of this, Mason and Watts (2009) recom-
mend intrinsic motivation, a proven motivator for annotating images (von Ahn and
Dabbish, 2004) and protein folding (Cooper et al., 2010). Second, although multiple
non-expert annotations can approach gold standard annotation, experts are better
participants when available (Snow et al., 2008). Thus, other tasks may understate
human performance with crowdworkers lacking proper incentives or skills.

Good quizbowlers are both accurate and quick. To measure skill, we compute
and plot in Figure 5.7 the joint distribution of average player accuracy and buzzing
position (percent of the question revealed). The ideal player would have a low aver-
age buzzing position (early guesser) and high accuracy; thus, the best players reside
in the upper left region. On average, players buzzes with 65% of the question shown
with 60% accuracy (Figure 5.7). Although there are other factoid qa and—more
specifically—trivia datasets, qb is the first and only dataset with a large dataset of
gameplay records which allows us to train models and run offline benchmarks.

5.3.4 Preprocessing
Before moving to model development, we describe necessary preprocessing to

eliminate answer ambiguity, pair questions to gameplay data, and creating dataset
folds that enable independent yet coordinated training of distinct guessing and
buzzing models. Preprocessing is covered in significantly more detail in Appendix C.1.
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Figure 5.6: Distribution of wikidata.org answer types (“instance of” relation) further
broken down by category. Most answers have matching types and reference a person,
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answers spread across literature, history, fine arts, and science. Answer types with
only one category are largely self-explanatory (e.g., mythological answers types to
the mythology category). The special category “NOMATCH” are answers without
a matched type and similar types are merged into larger categories.

Matching QB Answers to Wikipedia Pages Throughout this work, we frame
qb as a classification task over the set of Wikipedia page entities (§5.2.3), which
necessarily requires pairing answers to distinct pages if one exists. We pair ques-
tions and their answers to Wikipedia pages in two steps: parsing potential answers
from moderator instructions and matching to Wikipedia entities.20 In qb, “an-
swers” are in actuality instructions to the moderator that provide additional detail
on what answers are acceptable. For example, answer strings like “Second Vat-
ican Council [or Vatican II]” indicate to accept either surface form of the same
concept. Fortunately, the vast majority of these “answer instructions” are auto-
matically parsable due to their semi-regular structure. The second step—described
further in Appendix C.1.4—matches parsed answers to pages through a combination
of strict textual matching, expert-curated matching rules (e.g., only match “camp”
to Camp_(style) if “style” or “kitsch” are mentioned), and expert annotated pair-
ings between questions and pages.21 In total, we paired 119,093 out of 132,849 with
Wikipedia titles (examples in Appendix C.1.4).

20We preprocess the English Wikipedia 4/18/2018 dump with https://github.com/attardi/
wikiextractor.

21Primarily, the authors of this article annotated the answer to page pairings.
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Date Thu Oct 29 2015 08:55:37 GMT-0400 (EDT)
UID 9e7f7dde8fdac32b18ed3a09d058fe85d1798fe7
QID 5476992dea23cca90550b622
Position 47
Guess atlanta
Result True
Question text This Arcadian wounded a creature sent to punish

Oeneus for improperly worshipping Artemis and
killed the centaurs Rhaecus and Hylaeus. . .

Table 5.2: An entry from the gameplay dataset where the player correctly guesses
“Atlanta” at word 47. The entry qid matches with the proto_id field in the ques-
tion dataset where additional information is stored such as the source tournament
and year.

Dataset Folds The goal of the folds in the qanta dataset is to standardize the
training and evaluation of models for the guessing and buzzing sub-tasks. Towards
this goal, we sub-divide the qanta dataset by sub-task and standard machine learn-
ing folds (e.g., training, development, and test). We create the standard machine
learning folds by partitioning the data according to tournament type and year. To
increase the quality of evaluation questions, we only include questions from cham-
pionship level tournaments in the development and test folds.22 To derive the final
folds, we temporally divide the data (Arlot and Celisse, 2010) so that only (cham-
pionship) questions from 2015 and onward are used in evaluation folds.

The subdivision by task simultaneously addresses the issue that some ques-
tions lack gameplay data (thus are not helpful for buzzer training) and partitioning
the data so that the buzzer calibrates against questions unseen during training (de-
tails in Appendix C.1.3). Table 5.3 shows the size of each sub-fold; unassigned
questions correspond to those where the answer to page matching process failed.
Finally, hundreds of new qb questions are created every year which provides an
opportunity for continually adding new training questions and replacing outdated
test questions. Ultimately, this may help temper overconfidence in the generaliza-
tion of models (Patel et al., 2008b) since we expect there to be covariate shift, prior
probability shift, and domain shift in the data (Quionero-Candela et al., 2009) as
questions evolve to reflect modern events.

The qanta datasets, a copy of the Wikipedia data used, intermediate artifacts,
and other related datasets are available at http://datasets.qanta.org.
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Figure 5.7: Left: each protobowl user is represented by a dot, positioned by average
accuracy and buzzing position; size and color indicate the number of questions an-
swered by each user. Right: distribution of number of questions answered, accuracy,
and buzzing position of all users. An average player buzzes with 65% of the question
shown, and achieves about 60% accuracy.

5.4 Deciding When and What to Answer

One could imagine many machine learning models for playing qb: an end-
to-end reinforcement learning model or a heavily pipelined model that determines
category, answer type, answer, and decides when to buzz. Without making any value
judgment on the right answer, our approach divides the task into two subsystems:
guessing and buzzing (Figure 5.8). This approach mirrors ibm Watson’s23 two
model design (Ferrucci et al., 2010; Tesauro et al., 2013). The first model answers
questions, and the second decides when to buzz. Dividing a larger task into sub-tasks
is common throughout machine learning, particularly when the second is making a
prediction based on the first’s prediction. For example, this design pattern is used
in object detection (Girshick et al., 2014, generate bounding box candidates then
classify them), entity linking (Ling et al., 2015, generate candidate mentions and
then disambiguate them to knowledge base entries), and confidence estimation for
automatic speech recognition systems (Kalgaonkar et al., 2015). In our factorization,
guessing is based solely on question text. At each time step (word), the guessing
model outputs its best guess, and the buzzing model determines whether to buzz
or wait based on the guesser’s confidence and features derived from the game state.
This factorization cleanly reduces the guesser to question answering while framing

22We use questions from acf Regionals, acf Nationals, acf Fall, pace nsc, and nasat from
2015 onward for development and test sets.

23In Watson, the second system also determines wagers on Daily Doubles, wagers on Final
Jeopardy, and chooses the next question (e.g., history for $500)
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Fold Number of Questions

train + guess 96, 221
train + buzz 16, 706
dev + guess 1, 055
dev + buzz 1, 161
test + guess 2, 151
test + buzz 1, 953
unassigned 13, 602

All 132, 849

Table 5.3: We assign each question in our dataset to either the train, develop-
ment, or test fold. Questions in the development and test folds come from national
championship tournaments which typically have the highest quality questions. The
development and test folds are temporally separated from the train and develop-
ment folds to avoid leakage. Questions in each fold are assigned a “guess” or “buzz”
association depending on if they have gameplay data. Unassigned refers to questions
for which we could not map their answer strings to Wikipedia titles or there did not
exist an appropriate page to match to.

the buzzer as a cost-sensitive confidence calibrator.
This division of modeling labor makes it significantly easier to train the buzzer

as a learned calibrator of the guesser’s softmax classifier predictions. This is crucial
since the probabilities in neural softmax classifiers are unreliable (Guo et al., 2017).
Like how we train a calibration model (buzzer) over a classifier (guesser), Corbière
et al. (2019) train a calibration model on top of an image classification model which is
a more effective approach in high dimensional spaces compared to nearest-neighbor
based confidence measures (Jiang et al., 2018). However, not all buzzing errors
are equal in severity; thus, part of the buzzer’s challenge is in incorporating cost-
sensitive classification. By partitioning model responsibilities into separate guessing
and buzzing models, we can mitigate the calibration-based drawbacks of neural
softmax classifiers while naturally using gameplay data for cost-sensitive decision-
making.

Machines playing qb by guessing and buzzing semi-independently is also con-
venient from an engineering perspective: it simplifies model training and is easier
to debug. More importantly, it allows us and subsequent researchers to focus on
a sub-task of their choosing or the task as a whole. If you are interested in only
question answering, focus on the guesser. If you are interested in multi-agent co-
operation or confidence estimation, focus on the buzzer. Following the discussion
of our guessing (§5.5) and buzzing (§5.6) systems we describe our evaluations and
results in Section 5.7.1. Section 5.8 summarizes the outcomes of our live, in-person,
exhibition matches against some of the best trivia players in the world.
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Input Output Model

At its premiere, the librettist of this opera portrayed a
character who asks for a glass of wine with his dying wish

... For 10 points, name this Wolfgang Mozart Opera titled
for an enchanted woodwind instrument.

Guesser Guess: Cavellaria Rusticana
Score: .0287 

Buzzer Action: Wait

Guesser Guess: The Magic Flute          
Score: .997 

Buzzer Action: Buzz

Figure 5.8: The qanta framework for playing Quiz Bowl with semi-independent
guesser and buzzer models. After each word in the input is revealed the guesser
model outputs its best guesses. The buzzer uses these in combination with positional
and gameplay features to decide whether to take the buzz or wait action. The guesser
is trained as a question answering system that provides guesses given the input text
seen so far. Buzzers take on dual roles as calibrators of the guesser confidence scores
and cost-sensitive decision classifiers by using the guesser’s score, positional features,
and human gameplay data.

5.5 Guessing QB Answers

Guessing answers to questions is a factoid question answering task and the
first step towards our models playing qb (Figure 5.8). We frame the question an-
swering sub-task in qb as high dimensional multi-class classification over Wikipedia
entities (i.e., answers are entities defined by distinct Wikipedia pages). This section
describes three families of question answering models: information retrieval models
(§5.5.1), linear models (§5.5.2), and neural models (§5.5.3). Despite distinct differ-
ences, these approaches share a common structure: create a vector representation x
of the input question, create a vector representation for each candidate answer ai,
and then return the answer Ai corresponding to arg maxi f(x,ai) where f is some
similarity function.24

5.5.1 Explicit Pattern Matching with Information Retrieval
The first model family we discuss are traditional information retrieval (ir)

models based on the vector space model (Salton et al., 1975). Vector space mod-
els are particularly effective when term overlap is a useful signal—as in factoid
qb (Lewis et al., 2020a). For example, although early clues avoid keyword us-
age, giveaways often include terms like “Wolfgang Mozart” and “Tamino” that make
reaching an answer easier. Consequently, our vector space ir prove to be a strong
baseline (§5.7.1).

To frame this as an ir search problem, we treat guessing as document retrieval.
Input questions are search queries and embedded into a tf-idf (Jones, 1972; Ra-
jaraman and Ullman, 2011) vector x. For each answer Ai ∈ Atrain in the qb training
data, we concatenate all training questions with that answer into a document Di

24For brevity and clarity, we omit bias terms.
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embedded as ai into the same vector space.25 The textual similarity function f is
Okapi bm25 (Robertson and Walker, 1994) and scores answers ai against x. Dur-
ing inference, we return the answer Ai of the highest scoring document Di. We
implement our model using Apache Lucene and Elastic Search (Gormley and Tong,
2015).

However, the ir model’s reliance on pattern matching often fails early in the
question. For example, in the first sentence from Figure 5.1 the author intentionally
avoids keywords (“a character who asks for a glass of wine with his dying wish”).
Purely traditional ir methods, while effective, are limited since they rely on key-
words and cannot “soft match” terms semantically. Thus, we move on to machine
learning methods that address some of these shortcomings.

5.5.2 Trainable Pattern Matching with Linear Models
In addition to the ir model, we also test a linear model baseline that reduces

multi-class classification to one-versus-all binary classification. While an ir model
derives term weights from corpus statistics and a hand-crafted weighting scheme,
a one-versus-all linear model with one-hot term features x finds term weights that
maximize the probability of the correct binary prediction for each answer. The in-
put features x are derived from a combination of sparse n-grams and skip-grams.26

Since the number of classes is too high for standard one-versus-all multi-class clas-
sification,27 we instead use a logarithmic time one-versus-all model (Agarwal et al.,
2014; Daumé et al., 2017). However, this model is limited since it only considers lin-
ear relationships between n-gram terms, the model uses–at best—local word order,
and the sparse representation does not take advantage of the distributional hypoth-
esis (Harris, 1954). Next we describe neural models that use more sophisticated
forms of representation and composition to address these shortcomings.

5.5.3 Neural Network Models
The final family of methods we consider for qb question answering are neural

methods. We describe the shared components of the neural models (e.g., general
architectures and training details) and compare their composition functions.

In our model (Figure 5.9), we follow a widely used architecture in nlp to
embed words independently in a vector space, contextualize their representations,
temporally reduce representations, and then classify with a softmax layer (Col-
lobert and Weston, 2008). The first component of the model embeds question
q with k tokens into m-dimensional representations w = [w1, . . . ,wk]. Next, a
function c(·) : Rk×m → Rk×l contextualizes words as l-dimensional embeddings
v = [v1, . . . ,vk] = c(w). Since this is still a variable length sequence of repre-
sentations and the classifier requires a fixed size representation, we use a reducer

25We also tested, one document per training example, different values for bm25 coefficients, and
the default Lucene practical scoring function.

26The order of n-grams and skip-grams was determined by hyper parameter search
27There are approximately 25,000 distinct answers.
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w0 w1

At its premiere, the librettist of this...

wk

Word Embeddings

v0 v1 vk

Composition Function
(DAN, RNN, CNN...) 

Fixed Size Representation h

Classifier
(Linear + Softmax) 

Guess

Figure 5.9: All our neural models feed their input to an embedding function, then
a composition function, and finally a classification function. The primary variation
across our models is the choice of composition function used to compute a fixed,
example-level representation from its variable length input.

r(·) : Rk×m → Rn to derive an n-dimensional dense feature vector x = r(v). We call
specific pairs of contextualizers and reducers composition functions (§2.4.3). The
final model component—the classifier—computes logit scores si = xT ·ai as the dot
product between the features x and trainable answer embeddings ai. From this, we
use the softmax to compute a probability distribution

p = softmax(s) =
exp(s)∑k
i=1 exp(si)

(5.1)

over answers and train the model with the cross entropy loss

L =
k∑
i

yi log(p̂i) (5.2)

where yi = 1 for the true answer and yi = 0 otherwise. In our experiments, we
evaluate three classes of composition functions (i.e., contextualizer-reducer pairs):
unordered composition with deep averaging networks (Iyyer et al., 2015), recur-
rent network-based composition (Elman, 1990; Hochreiter and Schmidhuber, 1997;
Palangi et al., 2016; Cho et al., 2014a), and transformer-based composition (Vaswani
et al., 2017; Devlin et al., 2018).

Unordered Composition with Deep Averaging Networks Our first (un-
ordered) neural composition function is the deep averaging network (dan). We
introduced dans as a simple, effective, and efficient method for qb question an-
swering.28 Despite their disregard of word order, dans are competitive with more

28This work has new experiments comparing new composition functions and focuses on incor-
porating additional data. The dan first was introduced in:
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sophisticated models on classification tasks such as sentiment analysis (Iyyer et al.,
2015). Although there are cases where word order and syntax matter, many ques-
tions are answerable using only key phrases. For example, predicting the mostly
likely answer to the bag of words “inventor, relativity, special, general” is easy; they
are strongly associated with Albert Einstein.

All composition functions—such as dans—are fully described by the choice of
contextualizer and reducer. In dans, the contextualizer c is the identity function,
and the reducer is broken into two components. First, the dan averages word
embeddings v to create an initial hidden state

h0 =
1

k

k∑
i=1

vi. (5.3)

The final fixed-size representation x = hz is computed with z feed-forward layers
through the recurrence

hi = gelu(Wi · hi−1 + bi) (5.4)

whereWi and bi are parameters of the model and gelu is the Guassian Error Linear
Unit (Hendrycks and Gimpel, 2017b). Although dans are not the most accurate
model, they are an attractive trade-off between accuracy and computation cost.

Ordered Composition In contrast to dans, order-aware models like rnns, lstms,
and grus can model long range dependencies in supervised tasks (Linzen et al.,
2016). Since all these models belong to the family of recurrent models, we choose
one variant to describe in terms of its associated contextualizer and reducer.29 In
our model, the composition function

c(v) = gru(v) (5.5)

is a multi-layer, bi-directional gru (Cho et al., 2014a). The reducer

r(v) = [v
(forward)
k ;v

(backward)
0 ] (5.6)

concatenates the final layer’s forward and backward hidden states. Combined, this
forms the first ordered composition we test.

Transformer models, however, better represent context at the cost of complex-
ity (Vaswani et al., 2017; Devlin et al., 2018). Specifically, we input the cls token,
question, and sep token to uncased bert-base. Thus, the contextualizer

c(v) = bert(v) (5.7)

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep Unordered
Composition Rivals Syntactic Methods for Text Classification. Association for Compu-
tational Linguistics, 2015.

29Hyper parameter optimization indicated that gru networks were the most accurate recurrent
model.
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is simply bert and the reducer

r(v) =
1

k

k∑
i=1

vi (5.8)

is the average of the output states from the final layer associated with the question’s
wordpiece tokens.30 Next, we move on from model descriptions to training specifics.

Training Details In standard qa tasks, training over full questions is standard,
but with qb’s incremental setup this results in less accurate predictions. If the ex-
ample is the complete text, the model ignores difficult clues to focus on the “easy”
part of the question, preventing learning from “hard” clues. Instead of each training
example being one question, we use each of a question’s sentences as a singe train-
ing example. While this training scheme carries the downside that models may not
learn long-range dependencies across sentences, the empirical accuracy improvement
outweighs the disadvantages. In addition to these two approaches, we also tested
variable-length, but did not observe an improvement over the sentence-based train-
ing scheme.31

In non-transformer models we use 300-dimensional word embeddings initial-
ized with glove for words in the vocabulary and randomly initialized embeddings
otherwise.32 We regularize these models with dropout (Srivastava et al., 2014) and
batch normalization (Ioffe and Szegedy, 2015). Loss functions were optimized with
adam (Kingma and Ba, 2015) and models were trained with early stopping, and
learning rate annealing. All neural models were implemented in PyTorch (Paszke
et al., 2019) and AllenNLP (Gardner et al., 2018).

We optimize hyper parameters by running each setting once and record the
parameter settings corresponding to the top development set accuracy. The models
with the best parameters are run an (additional) five times to create estimates of
variance for each tracked metric (§5.7.1).

Although not exhaustive, these models are strong baselines for the question
answering component of qb. Section 5.10 identifies areas for future modeling work;
throughout the rest of this work however we focus on completing a description of
our approach to playing qb by combining guessers and buzzer (§5.6). Following this
we describe how we evaluate these systems independently (§5.7.1), jointly (§5.7.3),
offline, and in live events (§5.8).

5.6 Buzzing

Winning in qb requires answering accurately with as little information as
possible. It is crucial—for humans and computers alike—to accurately measure

30We also tested using the cls token with worse results.
31Variable length training creates k training examples from a question comprised of k sentences.

Each example includes the text from the start position up to and including sentence k.
32Randomly initialized embeddings use a normal distribution with mean zero and standard

deviation one.
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their confidence and buzz as early as possible without being overly aggressive. The
first part of our system, the guesser, optimizes for guessing accuracy; the second
part, the buzzer, focuses on deciding when to buzz. Since questions are revealed
word-by-word the buzzer makes a binary decision at each word: buzz and answer
with the current best guess, or wait for more clues.

The outcome of this action depends on the answers from both our guesser and
the opponent.33 To make this clear, we review the game’s mechanics. If we buzz
with the correct answer before the opponent can do so, we win 10 points; but if we
buzz with an incorrect answer, we lose 5 points immediately, and since we cannot
buzz again, the opponent can wait till the end of the question to answer, which
might cost us 10 extra points in the competition. Thus, it should be clear that “a
wrong answer in Quizbowl is extraordinarily costly” (Jennings, 2006, p. 93).

Before we discuss our strategy to buzzing, consider a buzzer with perfect
knowledge of whether the guesser is correct or not, but does not know anything
about the opponent: a locally optimal buzzer. This buzzer would buzz as soon as
the guesser gets the answer correct. A stronger buzzer exists: an omnipotent buzzer
with perfect knowledge of what the opponent will do; it would exploit the opponent’s
weaknesses: delay buzzing whenever an opponent might err. The agent would then
get a higher relative reward: once from the opponent’s mistake and then for getting
it correct.

The buzzer we develop in this chapter targets a locally optimal strategy: we
focus on predicting the correctness of the guesser and do not model the opponent.
This buzzer is effective: it both defeats players in our gameplay dataset (§5.3.3) and
playing against real human players (§5.8). The opponent modeling extension has
been explored by previous work, and we discuss it in Section 5.9.

5.6.1 A Classification Approach to Buzzing
Given the initial formulation of buzzing as a mdp (§5.2.5), it would be natural

to learn the task with reinforcement learning using the final score; however, we
instead use a convenient reduction to binary classification. Since we can compute
the optimal buzzing position easily as opposed to with expensive rollouts, we can
reduce the problem to classification (Lagoudakis and Parr, 2003). At each time step,
the model looks at the sequence of guesses that the guesser has generated so far, and
makes a binary decision of whether to buzz or to wait. Under the locally optimal
assumption, the ground truth action at each time step equals the correctness of the
top guess: it should buzz if and only if the current top guess is correct. Another
view of this process is that the buzzer is learning to imitate the oracle buzzing
policy from the ground truth actions (Coates et al., 2008; Ross and Bagnell, 2010;
Ross et al., 2011). Alternatively, the buzzer can also be seen as an uncertainty
estimator (Hendrycks and Gimpel, 2017a) of the guesser.

The guesses create a distribution over all possible answers. If this distribution
33We use point values from the typical American format of the game. The exact values are

unimportant, as they change the particulars of strategy but not the approach.
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faithfully reflects the uncertainty of guesses, the buzzer could be a simple “if–then”
rule: buzz as soon as the guesser probability for any guess gets over a certain
threshold. This threshold system is our first baseline, and we tune the threshold
value on a held-out dataset.

However, this does not work because the confidence of neural models is ill-
calibrated (Guo et al., 2017; Feng et al., 2018) and worsens with domain shift (Ka-
math et al., 2020). Our neural network guesser often outputs a long tail distribution
over answers concentrated on the top few guesses, and the confidence score of the
top guess is often higher than the actual uncertainty (the chance of being correct).
To counter these issues, we extract features from the top ten guesser scores and train
a classifier on top of them. Some important features include a normalized version
of the top ten scores and the gap between them (Appendix C.1.5 lists all features).

There is also important temporal information; for example, if the guesser’s top
prediction’s score steadily increases, this signals the guesser is certain about the top
guess. Conversely, a fluctuating top prediction (the answer is Hope Diamond. . . no,
I mean Parasaurolophus. . . no, I mean Tennis Court Oath) is a sign that perhaps the
guesser is not that confident (regardless of the ostensible score). To capture this, we
compare the current guesser scores with the previous time steps and extract features
such as the change in the score associated with the current best guess, and whether
the ranking of the current top guess changed in this time step.

To summarize, at each time step, we extract a feature vector, including current
and temporal features, from the sequence of guesses generated by the guesser so far.
We implement the classifier with both fully connected Multi-layer Perceptron (mlp)
and with Recurrent Neural Network (rnn). The classifier outputs a score between
zero and one indicating the estimated probability of buzzing. Following the locally
optimal assumption, we use the correctness of the top guess as ground truth action:
buzz if correct and wait if otherwise We train the classifier with logistic regression;
during testing, we buzz as soon as the buzzer outputs a score greater than 0.5. Both
models are implemented in Chainer (Tokui et al., 2015); we use hidden size of 100,
and lstm as the recurrent architecture. We train the buzzer on the “buzzertrain”
fold of the dataset, which does not overlap with the training set of the guesser, for
twenty epochs with the Adam optimizer (Kingma and Ba, 2015). Both buzzers have
test accuracy of above 80%, however, the classification accuracy does not directly
translate into the buzzer’s performance as part of the pipeline, which we look at
next.

5.7 Offline Evaluation

A core idea of this chapter is that the construction of qb questions lends
itself to a fairer evaluation of both humans and machine qa models: to see who
is better at answering questions, see who can answer the question first. However,
this is often impractical during model development, especially if the questions are
“new” (they have not been played by humans or computers). Moreover, a researcher
might be uninterested in solving the buzzing problem. Offline evaluations where the
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guesser and buzzer are evaluated independently with static data strikes a balance
between ease of model development and faithfulness to qb’s format. To address this,
Section 5.7.1 describes the metrics to compare offline model accuracy. Following
an error analysis (§5.7.2), Section 5.7.3 evaluates buzzing models by replacing this
oracle buzzer with trained buzzing models.

5.7.1 Evaluating the Guesser
Ideally, we would compare systems in a head-to-head competition where the

model (or human) who correctly buzzed and answered the most questions would
win (§5.8). However, this involves live play, necessitates a buzzing strategy, and
complicates evaluation of the guesser in isolation. Intuitively though, a model that
consistently buzzes correctly earlier in the question is better than a model that
buzzes late in the question. In our evaluations, we use three metrics that reflect
this intuition: accuracy early in the question, accuracy late in the question, and the
expected probability of beating a human assuming an optimal buzzing strategy.

Accuracy-Based Evaluation The easiest and most common method for evalu-
ating closed domain question answering methods is accuracy over all questions in
the test set. We report two variants of this: (1) accuracy using the first sentence
and (2) accuracy using the full question. While it is possible to answer some ques-
tions during the first sentence, it is the first and hardest position we can guarantee
could be answered. Although we report accuracy on full questions, this metric is a
minimum bar: the last clues are intentionally easy (§5.2.3). However, while start-of-
question and end-of-question accuracy help development and comparison with other
qa tasks, it is silent on human–computer comparison. We address this shortcoming
next.

Expected Probability of Defeating Human Players While comparing when
systems buzz is the gold standard, we lack gameplay records for all test set questions,
and it is unreasonable to assume it is easy to obtain them. Instead, marginalize over
empirical human gameplay to estimate the probability π(t) that a human would have
correctly answered a question by position t. Then, we combine this with model
predictions and marginalize over t to obtain the expected probability of winning
against an average player on an average gameplay question. A similar idea—to
compute the expected probability of winning a heads up match—has also been used
in machine translation (Bojar et al., 2013).

We compute the expected probability of winning (ew) in two steps. First, we
compute the proportion of players

π(t) = 1− Nt

N
, (5.9)

that have answered a question correctly by position t. N is the total number of
question-player records and Nt is the number of question-player records where the
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Figure 5.10: We plot the expected wins score with respect to buzzing position (solid
dark blue). For the ten most played questions in the buzztest fold we show the
empirical distribution for each individual question (dotted lines) and when aggre-
gated together (solid light blue). Among the most played questions, expected wins
over-rewards early buzzes, but appropriately rewards end-of-question buzzes.

player answered correctly by position t. We empirically estimate the expected prob-
ability of winning

π(t) = 0.0775t− 1.278t2 + 0.588t3 (5.10)

from the gameplay data as a cubic polynomial (Figure 5.10). At t = 0, the potential
payoff is at its highest since no one has answered the question. At t = ∞, the
potential payoff is at its lowest; all the players who would have correctly answered
the question already have. If the computer gets the question right at the end, it
would only score points against opponents who did not know the answer at all or
answered incorrectly earlier in the question.

ew marginalizes over all questions q and all positions j, and counts how many
times model m produced a guess g(m, q, j) that matched the answer of the ques-
tion a(q). Specifically we compute

EW(m) = Em [pwin] =
1

|Q|
∑
q∈Q

∞∑
j=1

1 [g(m, q, j) = a(q)] π (j) , (5.11)

where 1
|Q| is the count of question–position records. The indicator function is exactly

an oracle buzzer: it gives credit if and only if the answer is correct. However, this
rewards models with unstable predictions; for example, a model would be rewarded
twice for a sequence of predictions that were correct, wrong, and correct. We dis-
courage this model behavior by using a stable variant of ew which only awards
points if the current answer and all subsequent answers are correct. With this for-
malism, it is also straightforward to compute the expected winning probability for
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Accuracy (%)

Start End

Dev Test Dev Test E [pwin]

Model Top Mean Top Mean Top Mean Top Mean Dev Test

Lin. 2.56 2.56±0. 1.58 1.58±0. 11.9 11.9±0. 9.25 9.25±0. 6.62 4.96
ir 9.48 9.48 6.23 6.23 62.2 62.2 54.5 54.5 45.8 38.8
dan 10.7 10.4±0.3 8.28 7.88±0.3 60.0 59.1±0.9 51.0 51.4±1 42.6 35.5
rnn 10.5 9.46±0.7 7.86 7.78±0.4 52.3 51.8±1 46.4 45.9±0.9 27.6 23.3
bert 12.5 11.1±0.8 9.34 9.49±0.3 53.4 55.0±0.9 47.0 48.8±0.9 36.6 31.6

Table 5.4: We compare several models by accuracy at start-of-question, end-of-
question, and ew. In the table, models are sorted by start-of-question development
set accuracy. Standard deviations for non-ir models are derived from five trials;
standard deviation is not reported for the ir model since it is deterministic.

any guesser-buzzer combination by replacing the oracle buzzer (indicator function)
with a function that equals one if the guess is correct and the buzzer yielded a “buzz”
decision. We compare buzzers in Section 5.6, but now move to experimental results
for the guesser.

Guesser Comparison Experiments We evaluate our guessers using start accu-
racy, end accuracy, and expected wins (Table 5.4). All models struggle at the start
of the question with the best accuracy at only 9.34%. This is unsurprising: the first
sentence contains the most difficult clues and is difficult for even the best human
players. Models fare significantly better near the end of the question with giveaway
clues. However, even the best model’s 54.5% accuracy leaves much room for future
work.

While the bert model has the best early-question accuracy, it lags behind
the ir and dan for end of question accuracy. We suspect that order-aware models
over-emphasize less important parts of the question; additionally, the gap between
sentence training and full question inference advantages models that did not need to
learn an aggregation over longer sequences. This pattern is also reflected in the ew
scores;bert—as expected—outperforms the rnn model. Finally, across accuracy
and ew we see substantial drops between the development and test sets, which
suggests overfitting. Next, we investigate the errors models make.

5.7.2 Identifying Sources of Error
This section identifies and characterizes several failure modes of our models.

First, we compare the predictions of blackbox neural models and an ir model—an
explicit pattern matcher. Following this, we identify data skew towards popular
answers as a major source of error for less popular answers. Lastly, we manually
break down the test errors of one model.

99



BBBBBeeeeerrrrrttttt:::::     CCCCCooooorrrrrrrrrreeeeecccccttttt IIIIIRRRRR:::::     CCCCCooooorrrrrrrrrreeeeecccccttttt

BBBBBeeeeerrrrrttttt:::::     WWWWWrrrrrooooonnnnnggggg IIIIIRRRRR:::::     WWWWWrrrrrooooonnnnnggggg

(a) Start of the question error compari-
son

BBBBBeeeeerrrrrttttt:::::     CCCCCooooorrrrrrrrrreeeeecccccttttt IIIIIRRRRR:::::     CCCCCooooorrrrrrrrrreeeeecccccttttt

BBBBBeeeeerrrrrttttt:::::     WWWWWrrrrrooooonnnnnggggg IIIIIRRRRR:::::     WWWWWrrrrrooooonnnnnggggg

(b) End of the question error comparison

Figure 5.11: The bert and ir models are mostly wrong or correct on the same
subset of questions. At the end of the question, most of the questions the bert
model is correct on, the ir model is also correct on.

Behavioral Comparison of Neural and IR Models One way to analyze black-
box models like neural networks is to compare their predictions to better understood
models like the ir model. If their predictions—and thus exterior behavior—are
similar to a better understood model it suggests that they may operate similarly.
Figure 5.11 shows that even the bert and ir models are correct and wrong on
many of the same examples at end-of-question. Since one model—the ir model—is
an explicit pattern matcher this hints that neural qb models learn to be pattern
matcher as hinted by other work (Jia and Liang, 2017; Rajpurkar et al., 2018; Feng
et al., 2018).

Next we investigate this pattern matching hypothesis at the instance-level. For
our instance-level analysis we sample examples of correct and incorrect predictions.
First we randomly sample a test question that all models answer correctly after
the first sentence (Figure 5.12). This particular example has similar phrasing to
a training example (“A holder of this title commissioned. . .miniatures”) so it is
unsurprising that all models get it right.

In our second analysis, we focus on a specific answer (Turbulence) and its
twenty-seven training questions. Figure 5.13 shows a sample question for this answer
that the rnn model answered correctly but that ir model did not. The most
frequent words in the training data for this answer are “phenomenon” (twenty-three
times), “model” (seventeen times), “equation” (thirteen times), “numerically” (once),
and “tensor” (once). In this analysis we removed or substituted these word with
synonyms and then checked if the model’s prediction was the same.

Substituting words in this question shows that the model is over-reliant on spe-
cific terms. After removing the term “phenomenon,” the model changed its answer

100



Test Question (first sentence):
A holder of this title commissioned a set of miniatures to accompany the
story collection Tales of a Parrot.
Training Question (matched fragment):
A holder of this title commissioned Abd al-Samad to work on miniatures
for books such as the Tutinama and the Hamzanama.
Answer: Mughal Emperors

Figure 5.12: A test question that was answered correctly by all models after the
first sentence; a normally very difficult task for both humans and machines. A very
similar training example allows all models to answer the question through trivial
pattern matching.

Test Question (first sentence):
This phenomenon is resolved without the help of a theoretical model in
costly DNS methods, which numerically solve for the rank-2 tensor appear-
ing in the RANS equations.
Answer: Turbulence Score (rnn): .0113
Synonym Attacks: phenomenon → event, model → representation

Figure 5.13: Only the rnn model answers this question correctly. To test the ro-
bustness of the model to semantically equivalent input modifications, we use sears-
based (Ribeiro et al., 2018) synonym attacks and cause the model prediction to
become incorrect. Although this exposes a flaw of the model, it is also likely that
the low confidence score would likely lead a buzzer model to obstain; this highlights
one benefit of implicitly incorporating confidence estimation into the evaluation.

to Ising model (a mathematical model of ferromagnetism). If we instead substitute
the term with synonyms such as “occurrence”, “event”, and “observable event” the
answers are still incorrect. Similarly, if “model” is replaced by “representation” the
rnn also makes incorrect predictions. At least for this question, the model is not
robust to these semantics-preserving modifications (Ribeiro et al., 2018). Next we
move to aggregate error analysis.

Errors Caused by Data Sparsity For many test set answers, scarcity of training
data is a significant source of error. Most egregiously, 17.9% of test questions have
zero corresponding training examples. Beyond these questions, many more answers
have few training examples. While some topics are frequently asked about, one
goal of question writers is to introduce new topics for students to learn from. For
example, although physics is a common general topic, Electromagnetism has only
been an answer to one qb question. The distribution of training examples per unique
answers is skewed (Figure 5.14), and countries—like Japan—are asked about much
more frequently. Unsurprisingly, plotting the number of training examples per test
question answer versus model accuracy shows significant drops in accuracy for about
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Figure 5.14: The distribution of training examples per unique answer is heavily
skewed. The most frequent answer (Japan) occurs about 100 times. Nearly half of
the questions have one training example and just over sixty percent have either one
or two training examples.

half of the test questions (Figure 5.15).

Error Breakdown We conclude our error analysis by inspecting and breaking
down the errors made by the rnn model at the start and end of questions. Of
the 2,151 questions in the test set, 386 have zero training examples leaving 1,765
questions that are answerable by our models. Of the remaining questions, the rnn
answers 1,540 incorrectly after the first sentence and 481 at the end of the question.
To avoid errors likely due to data scarcity, we only look to questions with at least
25 training examples; the number of errors on this subset at the start and the end
of the question is 289 and 36. Table 5.5 lists reasons for model errors on a random
sample of 50 errors from the start of the question and all 36 errors from the end of
the question.

The predominant sources of error are when the model predicts the correct
answer type (e.g., person, country, place), but chooses the incorrect member of that
type. This accounts for errors such as choosing the wrong person, country, place,
or event. The rnn especially confuses countries; for example, in Figure 5.16, it
confuses the Spain and the United States, the parties to the Adam Onis Treaty.
The relative absence of incorrect answer type errors at the end of questions may be
attributable to the tendency of late clues including the answer type (such as “name
this country. . . ”).

In the process of manual error breakdown we also found five annotation errors
where the assigned Wikipedia answer did not match the true answer. This low
number of errors further validates the robustness of our answer mapping process.
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Figure 5.15: The more an answer is asked in the training set, the easier it is for
all models, both at the start and end of the question. This is a significant source
of errors since accuracy on at least 50% of test questions—those with seven or less
training examples—is significantly lower for all models.

5.7.3 Evaluating the Buzzer
We first evaluate our buzzer against the locally optimal buzzer which buzzes as

soon as the guesser gets the answer correct. However, this can be overly ambitious
and unrealistic since the guesser is not perfectly stable: it can get the answer correct
by chance, then vacillate between several candidates before settling down to the
correct answer. To account for this instability, we find the first position that the
guesser stabilizes to the correct answer and set it as the optimal buzzing position. In
other words, we compare against the optimal buzzer used in the definition of stable
ew score. To be exact, we start at the last position that the guess is correct, go
backwards until the guess is incorrect and consider this the locally optimal buzzing
position; we set the ground truth to all positions before this to zero, and all positions
after it to one.

We use the same guesser (rnn) in combination with different buzzers (Ta-
ble 5.6), and quantitatively compare their expected wins (§5.7.1). Both mlp and
rnn buzzers win against the static threshold baseline, but there is a considerable
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Error Reason Start Count End Count

Wrong Country 11 17
Wrong Person 16 2
Wrong Place 1 5
Wrong Type 15 5
Wrong Event 0 1
Nonsense 7 2
Annotation 1 4

Table 5.5: The table is an error breakdown for questions with at least twenty-
five training examples. To analyze errors at the start of questions, we randomly
sampled fifty errors and for end of question took all thirty-six errors. End of question
errors are primarily wrong country errors as in Figure 5.16 where the model answers
United States instead of Spain. Errors at the start of the question though are
more diverse. The most common error is guessing the correct answer type, but not
the specific member of that type; examples of this error class include answering
Albert Einstein instead of Alan Turing, or Iowa instead of Idaho.

Model acc ew Score

Threshold 0.013 -9.98
mlp 0.840 0.272 -2.31
rnn 0.849 0.302 -1.01

Optimal 1.0 0.502 2.19

Table 5.6: The accuracy (acc), expected wins (ew), and qb score (Score) of each
buzzer on the validation set. Both mlp and rnn outperform the static threshold
baseline by a large margin, but there is still a considerable gap from the optimal
buzzer.

gap between rnn and the optimal buzzer.
Low expected wins means the buzzer is either too aggressive or not aggressive

enough. To characterize their weaknesses, we compare the buzzers’ behavior over
time (Figure 5.18). The static threshold buzzer is too aggressive, especially early in
the questions as is also seen in Figure 5.17. This behavior to some extent resonates
with the observation that the confidence of neural models needs calibration (Guo
et al., 2017). The difference between mlp and rnn is small but rnn is less likely to
be overly aggressive early in the question.

For a more fine-grained analysis, we simulate games where our system plays
against individual human players using the gameplay dataset (§5.3.3). Based on the
guesser, we classify questions as “possible” or not. If the guesser gets the answer
correct before the opponent answers, it is possible for the buzzer to win the question.
Otherwise, it is impossible for the buzzer to do anything to beat the opponent. Based
on this categorization, Figure 5.19 further breaks down the outcomes: the rnn is
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Test Question: This country seized four vessels owned by Captain John
Meares, which were registered in Macau and disguised with Portuguese
flags, starting a dispute over fishing rights. To further negotiations with
this country, Thomas Jefferson signed the so-called “Two Million Dollar
Act.” This country agreed not to police a disputed spot of land, which was
subsequently settled by outlaws and “Redbones”, and which was called the
“Neutral Ground.” This country was humiliated by England in the Nootka
Crisis. Harman Blennerhassett’s farm on an island in the Ohio River was
intended as the launching point of an expedition against this European
country’s possessions in a plan exposed by James Wilkinson. This country
settled navigation rights with the United States in Pinckney’s Treaty, which
dealt with the disputed “West” section of a colony it owned. For 10 points,
name this European country which agreed to the Adams-Onis Treaty hand-
ing over Florida.
Guess: United States Answer: Spain

Figure 5.16: Although the answer to this question is Spain, many of the terms and
phrases mentioned are correlated with the United States. Thus, the rnn model
answers United States instead of the correct answer Spain. This is one of many
examples where the model answers with the correct answer type (country), but
incorrect member of that type.

less likely to be overly aggressive in both possible and impossible cases.

5.8 Live Exhibition Events

No amount of thorough experimentation and analysis of machine learning sys-
tems can match the public interest and rubber-meets-the-road practicalities of live
matches between humans and machines. ibm’s Watson in Jeopardy! (Ferrucci et al.,
2010), Deep Blue in chess (hsiung Hsu et al., 1995), and Google’s AlphaGo in
Go (Silver et al., 2016) were both tremendous scientific achievements and cultural
watersheds. In the case of chess and Go, they transformed how the games are played
through insight gained from the collaboration of humans and machines. Lastly, al-
though our offline evaluation is reasonable, a live evaluation verifies that the two
correspond since that is not always clear (Hersh et al., 2000).

In a similar spirit, we have hosted eight live events since 2015 where we show-
case our research to the public by having humans and machines compete against
each other.34 Except for our nips 2015 Best Demonstration against ml researchers,
our system’s opponents have been strong trivia players. Their achievements in-
clude victories in numerous national qb championships (high school and college),
Jeopardy!, and similar trivia competitions.

Our inaugural event in 2015 at the qb High School National Competition
Tournament (hsnct) pitted an early and vastly different version of our system

34Videos of our events are available at http://events.qanta.org.
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This instrument plays the only extended solo in the overture to Verdi’s
1 Luisa Miller. This is the solo instrument in a piece that opens with
the movement “The Perilous Shore”. This instrument introduces the
main theme to “The Pines of Janiculum” from Respighi’s The Pines of
Rome. This instrument has a long solo at the beginning of the Adagio from
Rachmaninoff’s Second Symphony, and it first states the Shaker theme in
Copland’s Appalachian Spring. John Adams’ Gnarly Buttons is for this
instrument. Heinrich Baermann, a virtuoso on this instrument, was the
dedicatee of Carl Maria von Weber’s two concertos for it. The basset horn
is a variant of, for 10 points, what 2 single-reed woodwind instrument,
which plays a notable glissando at the opening of Gershwin’s 3 Rhapsody
in Blue?
Answer: Clarinet Optimal Buzz: Correct: Wrong:
Threshold Buzz: Bassoon MLP Buzz: Bassoon RNN Buzz:
Clarinet
Human Buzzes: 1 Violin, 2 Obo, 3 Flute, Clarinet

Figure 5.17: In this question, the Threshold and mlp buzzers are too aggres-
sive and buzz before the guesser’s answer is correct. In contrast, the rnn is
more conservative and buzzes shortly after the optimal point which is—by a wide
margin—still earlier than the earliest (correct) human buzz .

against a team of tournament organizers in a match that ended in a tie.35 Later that
year, a similar system defeated Ken Jennings of Jeopardy! fame at the University of
Washington, but lost convincingly (145–345) at hsnct 2016. The subsequent year
at hsnct 2017, our redesigned system narrowly defeated its opponents (260–215).
This system used an ir guesser combined with a question type classifier (Li and
Roth, 2002) and an rnn buzzer.36 Although this impressive result appears to follow
the trend of machines improving until they defeat skilled humans, it is far from the
whole story as we will see in Chapter 6.

In parallel with these events, we hosted events where teams—humans and
machines—were selected from open competition. Our first of these style events was
hosted as part of a naacl 2016 workshop on question answering. Before the event,
local high school teams competed against each other, and researchers submitted
their machine systems which also played simulated matches against each other. At
the event the best human and machine teams played against each other with the
high school team defeating an early version of Studio ousia’s system (Yamada et al.,
2017, 2018b).37 In 2017, we hosted a similar workshop at nips where an improved

35Our software did not handle ties correctly and terminated instead of playing tiebreaker ques-
tions.

36In absolute terms, the type classifier did not improve accuracy; however, in our matches we
display the top five scoring guesses, and the type classifer improved the “plausibility” of that list.

37The ousia system embeds words and entities separately, and uses a dan-based architecture
over these.
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Figure 5.18: Comparing buzzers’ behavior over time against the optimal buzzer.
The red crossed area and dotted blue area combined indicates when the buzzer
thinks that the guesser is correct, the other two combined when the buzzer thinks
the guesser is wrong. The red (crossed) and orange (unhatched) areas combined
indicates when the buzzer matches the optimal buzzer. Our goal is to maximize
the red areas and minimize the blue areas. The static threshold baseline is overly
aggressive, especially at earlier positions in the question (large dotted blue area);
mlp and rnn both behaves reasonably well, and the aggressiveness of rnn is slightly
more balanced early on in the question.

version of ousia’s system yet again defeated its machine competition, but this time
also defeated the invited human team.

Events and collaborations like these show that qb is more than just another
question answering task. By engaging with the qb community to digitize qb ques-
tions in a machine-readable form we not only made our research possible, but started
the ecosystem of tools that students now rely on to practice with before competi-
tions. In the next step towards deeper collaboration with this community we are
building ways for humans and machines to cooperate in competition (Feng and
Boyd-Graber, 2019) and in writing questions (Chapter 6). We accomplish all this
while simultaneously providing ways for students of all ages to engage with and
benefit from research through our live exhibition events.

5.9 Related Work

Quizbowl is a question answering and sequential decision-making task. Where
Chapter 2 provides a general review of qa tasks, this section compares and contrasts
qb to some of these tasks and datasets. Following this, we make connections between
the decision-making aspect of qb to model calibration and prediction under domain
shift. Having discussed the uncertainty in model confidence scores, we finally discuss
handling uncertainty caused by opponents through opponent modeling.
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Figure 5.19: Breaking down the buzzer’s performance on the individual question
level. Impossible question means there is nothing the buzzer can do to beat the
opponent. It is clearer that rnn performs better than mlp, making fewer mistakes
of being overly aggressive.

5.9.1 Question Answering Datasets
In our comparison, we focus on factoid qa tasks in particular. The least

complex types of questions are often called “simple questions” since they can be
answered by a single simple fact. For example, SimpleQuestions (Bordes et al., 2015)
is specifically designed so that questions can be answered using one knowledge-base
triplet, and WikiMovies (Miller et al., 2016b) automatically generates questions
from knowledge base triplets. Similarly, WebQuestions (Berant et al., 2013) uses
the Google Suggest api to collect questions containing specific entities and crowd-
workers only answer questions using Freebase facts. Despite the relative ease in
creating these datasets, they lack the complexity and linguistic diversity of “natural”
data which is partly responsible for tasks like SimpleQuestions being essentially
solved (Petrochuk and Zettlemoyer, 2018). In qb, the capability to answer simple
question like these is a bare minimum requirement and takes form as the final,
“giveaway” clues at the end of questions which even novice (human) players usually
answer correctly.

Humans have played trivia games and tournaments for decades (Boyd-Graber
and Börschinger, 2020) and as a result there are ample non-qb sources of trivia
questions. The most famous example—Jeopardy!—was converted into the searchqa
dataset (Dunn et al., 2017). Other trivia-based qa datasets include TriviaQA which
is built from fourteen trivia sites (Joshi et al., 2017) and Quasar-T which is built
from questions collected by a reddit user (Dhingra et al., 2017). While some of these
are paired with potentially useful supporting evidence, a hallmark of these datasets
and qb is that the question alone unambiguously identifies an answer.

However, providing supporting documents to answer questions is another pop-
ular way to frame qa tasks. Although Trecqa (Voorhees and Tice, 2000) and Natu-
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ralQuestions (Kwiatkowski et al., 2019) differ in that answers are not known a priori
by the asker (§2.2.3), they are good examples of questions that are paired with ver-
ified supporting documents. In these tasks, the questions—user queries from search
engines—were written without knowledge of any particular supporting documents
and afterwards annotators attempted to find appropriate supporting documents.
Although triviaqa provides potentially relevant documents, they are not human
verified; similarly, ms marco (Nguyen et al., 2016), WikiReading (Hewlett et al.,
2016), and Newsqa (Trischler et al., 2017) also provide unverified supporting docu-
ments. squad in particular falls outside this paradigm since—in general—questions
are dependent on the selected context paragraph (§2.2.2).

Another set of tasks focuses on creating questions that require multiple sup-
porting documents and multi-step reasoning. In qb, early clues are often a compo-
sition of multiple facts about the answer. For example, to guess “Die Zauberflöte”
from “At its premiere, the librettist of this opera portrayed a character who asks for
a glass of wine with his dying wish”, one would have to combine two pieces of text
from Wikipedia: “Papageno enters. The priests grant his request for a glass of wine
and he expresses his desire for a wife.” and “Emanuel Schikaneder, librettist of Die
Zauberflöte, shown performing in the role of Papageno”. While this work focuses
on tossup qb questions, a second type of qb question—bonuses—emphasize this
multi-step aspect through multi-part questions (Elgohary et al., 2018).

Multi-step reasoning datasets primarily differ by providing ground-truth an-
notations to sufficient supporting documents. In Wikihop (Welbl et al., 2018),
multi-hop questions are automatically constructed from Wikipedia, Wikidata, and
WikiReading. HotPotQA (Yang et al., 2018b) follows a similar structure, but ques-
tion text is crowdsourced rather than automatically generated. However, Min et al.
(2019) show that although these questions are meant to be only solvable by using
multi-step reasoning, that many are answerable with single-hop reasoning. Sub-
sequent datasets like qasc (Khot et al., 2020), drop (Dua et al., 2019), and
break (Wolfson et al., 2020) focus on creating questions that are much more likely
to require multi-step reasoning through adversarial annotation. However, multi-step
questions are not the only way to make questions more difficult.

Adversarial question authoring and adversarial filtering (Zellers et al., 2018)
are other ways to increase difficulty. The general framework of adversarial authoring
filters questions either during or after annotation by whether a strong baseline an-
swers it correctly. For example, Wallace et al. (2019b) show that when qb question
writers—while authoring a question—are shown what a model would answer and
why, that they create questions that are significantly more difficult for machines
while being no more difficult for human players. Along similar lines, Bartolo et al.
(2020) let writers see what a model would answer, but iteratively create new ad-
versarial questions, re-train the model, and collect new adversarial questions anew.
Although contrast sets explicitly do not have a model in the loop (Gardner et al.,
2020a), they are similarly intended to challenge models through example perturba-
tions. Other effective example perturbations for automatically creating adversarial
examples include adding sentences to context paragraphs (Jia and Liang, 2017) and
in general semantic-preserving permutations (Ribeiro et al., 2018). The common
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thread in all these works is to make questions more difficult for machines so that
models continue to improve.

5.9.2 Answer Triggering and Model Calibration
Just as in qb’s buzzer, in real-world applications of machine learning it is

important to know when to trust a model’s confidence in its predictions (Jiang
et al., 2012). In qa, knowing when to answer is known as answer triggering (Yang
et al., 2015; Rajpurkar et al., 2018) and the core task—correctly estimating model
confidence—is model calibration (Zadrozny and Elkan). Having machines that ac-
curately convey their confidence is doubly important since humans have the unfor-
tunate tendency to place too much trust in machines (Sundar, 2007). Despite this,
the rise of deep learning seems to have only made this more challenging (Guo et al.,
2017; Feng et al., 2018). Fortunately, recent work has made progress in this prob-
lem by making connections to out-of-domain detection (Kamath et al., 2020). Along
similar lines, the buzzing task in qb is partially dependent on having well-calibrated
models.

5.9.3 Opponent Modeling
qb is far from the only game where players benefit from modeling oppo-

nent behavior. Opponent modeling is particularly important in games with hidden
information—in qb this takes the form of the yet-to-be-revealed question and the
per-question skill of the opponent. One classic example of opponent modeling under
uncertainty is Poker (Billings et al., 1998) where identifying and adapting to oppo-
nents is central to the game. In games like Scrabble, opponent behavior can even be
used to infer hidden information—such as their remaining tiles—to make it easier
to anticipate and counter their strategy (Richards and Amir, 2007). Similarly, in
real-time strategy games the opponent’s strategy is often hidden and hierarchically
structured (Schadd et al., 2007); they may play aggressive—similar to aggressive
buzzing—making defensive play more advantageous. Traditionally, qb is played in
teams, so a full model should account for your own team’s skills as well as the mix-
ture of opponent skills (e.g., certain players may be better at history questions).
Although this is unaddressed in qb, this general framing has been considered in
games where players compete with each other for limited resources, but are advan-
taged by doing so semi-cooperatively (Von Der Osten et al., 2017). One potential
area of future work is in focusing on opponent modeling in qb with an emphasis
on accounting for teams of players and strategies that evolve over the course of a
match (e.g., play less conservatively when trailing).

5.10 Future Work

Since future work in Chapter 7 focuses on directions to improve dataset con-
struction and qa evaluations, here we identify research directions that are particu-
larly well suited to qa in particular. Improving qb models can incorporate many
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commonplace tasks in nlp other than question answering. Reasoning about entities
can be improved through better named entity recognition, entity linking, coreference
and anaphora resolution. Some of the more difficult clues in qb however presume
that the player has read and integrated the content of books such as important
plot points. Further work in reading comprehension and summarization could help
answer some of these questions. At a more general level, the extraction of infor-
mation from external knowledge sources (such as books or Wikipedia) is important
since the distribution of training examples per answer is heavily skewed, and some
new questions ask about current events. Next, we take a closer look at future work
using the perpetual influx of new and diverse questions from annual tournaments
and working with the supportive qb community.

5.10.1 Generalization in Factoid Question Answering
Although the precise format of qa is a bit idiosyncratic, it continues to grow

in size and diversity year-over-year due to continually running tournaments and the
factual arms race between players and writers (§5.2.3). With the popularization of
qb, the number of questions per year quadrupled in the ten-year period between
2007 and 2017 (Figure 5.20). As the dataset continues to grow, it will demand that
machines and humans broaden their knowledge of past events while also updating
their knowledge with current events. Every year presents an opportunity to test
both how well models generalize to novel questions and how well they generalize
to questions about current events. For example, in a 2017 exhibition match our
model missed a question about the company responsible for driving down rocket
launch costs (SpaceX); a phenomenon which only manifested itself several years
prior. These questions could become part of the effort to build dynamic leaderboards
like in Chapter 7 which will hopefully improve the generalization of qa models.

For qb specifically, a major unsolved challenge is few-shot and zero-shot qa.
The scarcity of training examples per unique answer (Figure 5.14) causes a substan-
tial drop in the accuracy of qb models (Figure 5.15). The central challenge is one
that every student agonizes over while reviewing for exams: anticipating what topics
will be on the exam! In qb, “being able to predict and learn about the non-canonical
answers that are on the cusp of being asked about is one way to become a great
player”(can, 2020). In our data and throughout exhibition matches, we estimate
that between 15-20% of questions have novel answers. A similar challenge is faced
in computer vision where not all object categories are known beforehand and for
many there is scarce training data (Xian et al., 2018). Although there are relatively
simple domain adaptation methods based on feature augmentation (Daume III,
2007; Kim et al., 2016b) and adversarial learning (Chen and Cardie, 2018), these
still do not address the core challenge of anticipating test-time topics. Recent work
provides a potential solution to this by constructing a large set of “probably-asked
questions” (Lewis et al., 2021) to use for training. Beyond this, although there is a
cultural understanding of the “canon” of qb, this has not been rigorously studied,
which could serve to inform how to best train zero-shot qa models for qb, but
more interestingly shed insight into how a dedicated community’s shared memory
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Figure 5.20: The growth of the qanta dataset in number of questions and number
of distinct answers over the past twenty years starting in 1997. The dataset has
grown by at least 5,000 questions every year since 2010. All questions with matched
answers are included, and we construct the plot by using the tournament year of
each question. Independently, participation in qb (and thus number of students
writing questions) has roughly doubled every year since 2008.

has evolved over time.

5.10.2 Robust, Trustable, and Explainable Machine Learning
qb naturally encourages qa systems that are well calibrated, but is a useful

setting for improving robustness (Goel et al., 2021), explainability (Belinkov and
Glass, 2019) and trust (Mitchell et al., 2019) in machine learning systems. For
example, qa is also a good platform evaluating interpretations through machine-
human cooperative play (Feng and Boyd-Graber, 2019). Beyond this though, as
Chapter 6 explores, qb is a good platform for testing the explainability of qa
systems through adversarial authoring. Our collaborative research in qb thus far is
only a beginning.

5.11 Conclusion

This chapter introduces and makes the case for incremental, pyramidal ques-
tion answering with qb. Solving qb questions requires sophisticated nlp such as
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resolving complex coreference, multi-hop reasoning, and understanding the rela-
tionships between the plethora of entities that could be answers. Fundamental to
answering qb questions is that the questions are incremental; this is both fun and
good for research. It is fun because it allows for live, engaging competitions be-
tween humans and computers. To evaluate systems we use three methods: offline
accuracy-based metrics adapted to the incremental nature of qb, simulated matches
against machines and humans, and live exhibition matches. Although the best mod-
els have sixty percent accuracy at the end of questions, this is well below the best
players, and early clues remain particularly challenging. This format—the prod-
uct of refining human question answering competitions over decades—is also good
for research because it allows for fair, comprehensive comparison of systems and
iterative improvement as systems answer questions earlier and earlier.

However, the benefits to research go beyond format or specific sub-tasks, and
extend to our symbiotic collaboration with the public. Exhibition matches double as
outreach events and opportunities to put machine systems to the test on previously
unseen questions. In this next chapter, we show that by collaborating with the
qb community we can combine the strengths of machines and humans to improve
question quality. Rather than compete against qb systems, writers are collaborate
with machine learning tools to discover bad clues which helps create questions more
interesting to humans that also better test the generalization of systems. By aligning
the goals of the trivia and qa communities, we can create datasets that better
discriminate different levels of language and knowledge understanding.

Beyond the specific qb community, live exhibitions also serve the general pub-
lic. Exhibition games demonstrate what nlp and ml systems can do and what they
cannot. When the tricks that computers use to answer questions are revealed to
lay audiences, some of the mystique is lost, but it can also encourage enthusiasts
to investigate our techniques to see if they can do better. Our open data and code
facilitates this open competition, and the qb community helps make it fun and
engaging.

qb isn’t just another dataset or task; it is a rich platform for nlp research
that co-evolves with the qb community. One example of this is our digitization
of qb questions through our online interface which created and popularized online
qb play. The next chapter explores how machines and humans can collaborate to
write better questions while advancing nlp research. Beyond this, we hope that new
unforeseen research directions will continue emerging from this collaboration while
simultaneously giving back to the qb community through new and exciting ways
of engaging with state-of-the-art research in machine learning and natural language
processing.
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Chapter 6: Centaur Authoring of Adversarial Questions

Similar to how the mythological centaur was half-human,
half-horse, [these chess teams] were half-human, half-ai. Because
humans & ais are strong on different dimensions, together, as a
centaur, they can beat out solo humans and computers alike.

Nicky Case on Kasparov’s Centaur Chess

This chapter continues building on the idea of creating more discriminative
questions, but instead of focusing on format as in Chapter 5, we focus on more
discriminative data.1 As Chapter 4 points out (§4.4.5), questions are least discrim-
inative when the likelihood of both subjects having the same response is highest
because the question is either too easy or too hard. One thing that can make
qb questions too easy for machines is if statistical patterns give away the answer
(§5.7.2); the end effect is that an otherwise challenging question to make progress
on is wasted. This chapter introduces an annotation framework where humans and
machines cooperate to write (qb) questions that contain fewer of these statistical
patterns. Although this may be undesirable under the Cranfield paradigm (§2.1.1),2
under the Manchester paradigm (§2.1.2) this is important since under that paradigm
the presence (or absence) of specific statistical patterns should not matter.

6.1 Introduction

Proponents of machine learning claim human parity on tasks like reading com-
prehension (Yu et al., 2018) and commonsense inference (Devlin et al., 2018). De-
spite these successes, many evaluations neglect that computers solve natural lan-
guage processing (nlp) tasks in a fundamentally different way than humans.

Models can succeed without developing “true” language understanding (Bender
and Koller, 2020), instead learning superficial patterns from crawled (Chen et al.,
2016) or manually annotated datasets (Kaushik and Lipton, 2018; Gururangan et al.,
2018). In the context of testing for intelligent behavior, answering from patterns
alone is undesirable. Thus, recent work stress tests models via adversarial evalua-
tion: elucidating a system’s capabilities by exploiting its weaknesses (Jia and Liang,
2017; Belinkov and Glass, 2019). Unfortunately, while adversarial evaluation reveals

1This chapter is based on the tacl publication Wallace et al. (2019b).
2Some patterns may be useful; at the same time, ir systems should be robust so the desirability

of statistical patterns is contextual.
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Figure 6.1: Adversarial evaluation in nlp typically focuses on a specific phenomenon
(e.g., word replacements) and then generates the corresponding examples (top).
Consequently, adversarial examples are limited to the diversity of what the un-
derlying generative model or perturbation rule can produce and also require down-
stream human evaluation to ensure validity. Our setup (bottom) instead has human-
authored examples, using human–computer collaboration to craft adversarial exam-
ples with greater diversity.

simplistic model failures (Ribeiro et al., 2018; Mudrakarta et al., 2018), exploring
more complex failure patterns requires human involvement (Figure 6.1): automat-
ically modifying natural language examples without invalidating them is difficult.
Hence, the diversity of adversarial examples is often severely restricted.

Instead, our half-human, half-computer (centaur) approach uses human cre-
ativity to generate adversarial examples. A user interface presents model interpre-
tations and helps users craft model-breaking examples (§6.3). We apply this to a
qb (Chapter 5) where trivia enthusiasts—who already write questions for academic
competitions—create diverse examples that stump existing qa models.

The adversarially authored test set is nonetheless as easy as regular questions
for humans (§6.4), but the relative accuracy of strong qa models drops as much
as 40% (§6.5). We also host live human vs. computer matches—where models
typically defeat top human teams—but unlike our prior exhibition matches (§5.8)
observe spectacular model failures on adversarial questions.

Analyzing the adversarial edits uncovers phenomena that humans can solve
but computers cannot (§6.6), validating that our framework uncovers creative, tar-
geted adversarial edits (§6.7). Our resulting adversarial dataset presents a fun,
challenging, and diverse resource for future qa research: a system that masters it
will demonstrate more robust language understanding.

6.2 Adversarial Evaluation for nlp

Adversarial examples (Szegedy et al., 2013) often reveal model failures better
than traditional test sets. However, automatic adversarial generation is tricky for
nlp (e.g., by replacing words) without changing an example’s meaning or invalidat-
ing it.

Recent work side-steps this by focusing on simple transformations that pre-
serve meaning. For instance, Ribeiro et al. (2018) generate adversarial perturba-
tions such as replacing What has → What’s. Other minor perturbations such as
typos (Belinkov and Bisk, 2018), adding distractor sentences (Jia and Liang, 2017;
Mudrakarta et al., 2018), or character replacements (Ebrahimi et al., 2018) preserve
meaning while degrading model performance.
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Generative models can discover more adversarial perturbations but require
post hoc human verification of the examples. For example, neural paraphrase or
language models can generate syntax modifications (Iyyer et al., 2018), plausible
captions (Zellers et al., 2018), or nli premises (Zhao et al., 2018). These meth-
ods improve example-level diversity but mainly target a specific phenomenon, e.g.,
rewriting question syntax.

Furthermore, existing adversarial perturbations are restricted to sentences—
not the paragraph inputs of qb and other tasks—due to challenges in long-text
generation. For instance, syntax paraphrase networks (Iyyer et al., 2018) applied to
qb only yield valid paraphrases 3% of the time (Appendix D.1).

6.2.1 Putting a Human in the Loop
Instead, we task human authors with adversarial writing of questions: gener-

ating examples which break a specific qa system but are still answerable by humans.
We expose model predictions and interpretations to question authors, who find ques-
tion edits that confuse the model.

The user interface makes the adversarial writing process interactive and model-
driven, in contrast to adversarial examples written independent of a model (Ettinger
et al., 2017). The result is an adversarially authored dataset that explicitly exposes
a model’s limitations by design.

Human-in-the-loop generation can replace or aid model-based adversarial gen-
eration approaches. Creating interfaces and interpretations is often easier than
designing and training generative models for specific domains. In domains where
adversarial generation is feasible, human creativity can reveal which tactics auto-
matic approaches can later emulate. Model-based and human-in-the-loop generation
approaches can also be combined by training models to mimic human adversarial
edit history, using the relative merits of both approaches.

6.3 Our QA Testbed: Quizbowl

Like the work in Chapter 5, we continue using qb as it is the “gold standard”
of academic competitions between universities and high schools is qb.

6.3.1 Known Exploits of Quizbowl Questions
Like most qa datasets, qb questions are written for humans. Unfortunately,

the heuristics that question authors use to select clues do not always apply to com-
puters. For example, humans are unlikely to memorize every song in every opera
by a particular composer. This, however, is trivial for a computer. In particular, a
simple qa system easily solves the example in Figure 6.2 from seeing the reference
to “Un Bel Di”. Other questions contain uniquely identifying “trigger words” (Har-
ris, 2006). For example, “martensite” only appears in questions on steel. For these
examples, a qa system needs only use a simple and non-generalizable if–then rule.
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The protagonist of this opera describes the future day when her lover will arrive on a boat
in the aria “Un Bel Di” or “One Beautiful Day”. The only baritone role in this opera is
the consul Sharpless who reads letters for the protagonist, who has a maid named Suzuki.
That protagonist blindfolds her child Sorrow before stabbing herself when her lover B. F.
Pinkerton returns with a wife. For 10 points, name this Giacomo Puccini opera about an
American lieutenant’s affair with the Japanese woman Cio-Cio San.
Answer: Madama Butterfly

Figure 6.2: This question is easily answered by a model after seeing the reference
to “Un Bel Di.” Our adversarial writing process highlights terms like these which
humans can then modify to make clues more challenging for computer.

One might wonder if this means that factoid qa is thus an uninteresting,
nearly solved research problem. However, some qb questions are fiendishly difficult
for computers. Many questions have intricate coreference patterns (Guha et al.,
2015), require reasoning across multiple types of knowledge, or involve complex
wordplay. If we can isolate and generate questions with these difficult phenomena,
“simplistic” factoid qa quickly becomes non-trivial.

6.3.2 Models and Datasets
We conduct two rounds of adversarial writing. In the first, authors attack the

traditional information retrieval (ir) system from Section 5.5.1 which we also used
in the nips 2017 qb shared task (Boyd-Graber et al., 2018).

In the second round, authors attack either the ir model or a neural qa model.
The neural model is a bidirectional rnn using the gated recurrent unit architec-
ture (Cho et al., 2014b) (§5.5.3). Both models in this round are trained using the
full qanta dataset (§5.3). The second round dataset incorporates more diverse
answers than the first (25,000 entities versus 11,000 in round one).3

6.3.3 Interpreting Quizbowl Models
To help write adversarial questions, we expose what the model is thinking

to the authors. We interpret models using saliency heat maps: each word of the
question is highlighted based on its importance to the model’s prediction (Ribeiro
et al., 2016).

For the neural model, word importance is the decrease in prediction probability
when a word is removed (Li et al., 2016; Wallace et al., 2018). We focus on gradient-
based approximations (Simonyan et al., 2014; Montavon et al., 2018) for their com-
putational efficiency. To interpret a model prediction on an input sequence of n
words w = 〈w1,w2, . . .wn〉, we approximate the classifier f with a linear function
of wi derived from the first-order Taylor expansion. The importance of wi, with

3The qanta dataset was built contemporaneously with the initial data collection of this chapter,
and we used the improved version in the second data collection round.
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Figure 6.3: The author writes a question (top right), the qa system provides guesses
(left), and explains why it makes those guesses (bottom right). The author can then
adapt their question to “trick” the model.

embedding vi, is the derivative of f with respect to the one-hot vector:

∂f

∂wi
=
∂f

∂vi

∂vi
∂wi

=
∂f

∂vi
· vi. (6.1)

This simulates how model predictions change when a particular word’s embedding is
set to the zero vector—it approximates word removal (Ebrahimi et al., 2018; Wallace
et al., 2018).

For the ir model, we use the ElasticSearch Highlight api (Gormley and Tong,
2015), which provides word importance scores based on query matches from the
inverted index.

6.3.4 Adversarial Writing Interface

The authors interact with either the ir or rnn model through a user interface4

(Figure 6.3). An author writes their question in the upper right while the model’s
top five predictions (Machine Guesses) appear in the upper left. If the top prediction
is the right answer, the interface indicates where in the question the model is first
correct. The goal is to cause the model to be incorrect or to delay the correct answer
position as much as possible.5 The words of the current question are highlighted
using the applicable interpretation method in the lower right (Evidence). We do not

4https://github.com/Eric-Wallace/trickme-interface/
5The authors want normal qb questions which humans can easily answer by the very end. For

popular answers, (e.g., Australia or Suez Canal), writing novel final give-away clues is difficult.
We thus expect models to often answer correctly by the very end of the question.
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enforce time restrictions or require questions to be adversarial: if the author fails to
break the system, they are free to “give up” and submit any question.

The interface continually updates as the author writes. We track the ques-
tion edit history to identify recurring model failures (§6.6) and understand how
interpretations guide the authors (§6.7).

6.3.5 Question Authors
We focus on members of the qb community: they have deep trivia knowledge

and craft questions for qb tournaments (§5.2.3). We award prizes for questions read
at live human–computer matches (§6.5.3).

The question authors are familiar with the standard format of qb questions (Lu-
jan and Teitler, 2003). The questions follow a common paragraph structure, are well
edited for grammar, and finish with a simple “give-away” clue (§5.2.2). These con-
straints benefit the adversarial writing process as it is very clear what constitutes
a difficult but valid question. Thus, our examples go beyond surface-level “breaks”
such as character noise (Belinkov and Bisk, 2018) or syntax changes (Iyyer et al.,
2018). Rather, questions are difficult because of their semantic content (examples
in Section 6.6).

6.3.6 How an Author Writes a Question
To see how an author might write a question with the interface, we walk

through an example of writing a question’s first sentence. The author first selects
the answer to their question from the training set—Johannes Brahms—and begins:

Karl Ferdinand Pohl showed this composer some pieces on which this
composer’s Variations on a Theme by Haydn were based.

The qa system buzzes (i.e., it has enough information to interrupt and answer
correctly) after “composer”. The author sees that the name “Karl Ferdinand Pohl”
appears in Brahms’ Wikipedia page and avoids that specific phrase, describing Pohl’s
position instead of naming him directly:

This composer was given a theme called “Chorale St. Antoni” by the
archivist of the Vienna Musikverein, which could have been written by
Ignaz Pleyel.

This rewrite adds in some additional information (there is a scholarly disagreement
over who wrote the theme and its name), and the qa system now incorrectly thinks
the answer is Frédéric Chopin. The user can continue to build on the theme, writing

While summering in Tutzing, this composer turned that theme into
“Variations on a Theme by Haydn”.
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Science 17%
History 22%
Literature 18%
Fine Arts 15%
Religion, Mythology, 13%Philosophy, and Social Science
Current Events, Geography, 15%and General Knowledge

Total Questions 1213

Table 6.1: The topical diversity of the questions in the adversarially authored dataset
based on a random sample of 100 questions.

Again, the author sees that the system buzzes “Variations on a Theme” with the
correct answer. However, the author can rewrite it in its original German, “Vari-
ationen über ein Thema von Haydn” to fool the system. The author continues to
create entire questions the model cannot solve.

6.4 A New Adversarially-Authored Dataset

Our adversarial dataset consists of 1213 questions with 6,541 sentences across
diverse topics (Table 6.1).6 There are 807 questions written against the ir system
and 406 against the neural model by 115 unique authors. We plan to hold twice-
yearly competitions to continue data collection.

6.4.1 Validating Questions with Quizbowlers
We validate that the adversarially authored questions are not of poor quality or

too difficult for humans. We first automatically filter out questions based on length,
the presence of vulgar statements, or repeated submissions (including re-submissions
from the qb training or evaluation data).

We next host a human-only qb event using intermediate and expert players
(former and current collegiate qb players). We select sixty adversarially authored
questions and sixty standard high school national championship questions, both
with the same number of questions per category (list of categories in Table 6.1).

To answer a qb question, a player interrupts the question: the earlier the
better. To capture this dynamic, we record both the average answer position (as
a percentage of the question, lower is better) and answer accuracy. We shuffle the
regular and adversarially authored questions, read them to players, and record these
two metrics.

The adversarially authored questions are on average easier for humans than
the regular test questions. For the adversarially authored set, humans buzz with

6Data available at http://trickme.qanta.org.
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41.6% of the question remaining and an accuracy of 89.7%. On the standard ques-
tions, humans buzz with 28.3% of the question remaining and an accuracy of 84.2%.
The difference in accuracy between the two types of questions is not significantly
different (p = 0.16 using Fisher’s exact test), but the buzzing position is earlier for
adversarially authored questions (p = 0.0047 for a two-sided t-test). We expect the
questions that were not played to be of comparable difficulty because they went
through the same submission process and post-processing. We further explore the
human-perceived difficulty of the adversarially authored questions in Section 6.5.3.

6.5 Computer Experiments

This section evaluates qa systems on the adversarially authored questions.
We test three models: the ir and rnn models shown in the interface, as well as a
Deep Averaging Network (§5.5.3) to evaluate the transferability of the adversarial
questions. We break our study into two rounds. The first round consists of adver-
sarially authored questions written against the ir system (§6.5.1); the second round
questions target both the ir and rnn (§6.5.2).

Finally, we also hold live competitions that pit the state-of-the-art Studio
Ousia model (Yamada et al., 2018b) against human teams (§6.5.3).

6.5.1 First Round Attacks: IR Adversarial Questions Transfer To All
Models

The first round of adversarially authored questions target the ir model and
are significantly harder for the ir, rnn, and dan models (Figure 6.4). For example,
the dan’s accuracy drops from 54.1% to 32.4% on the full question (60% of original
performance).

For both adversarially authored and original test questions, early clues are dif-
ficult to answer (accuracy about 10% for the first quarter of the question). However,
during the middle third of the questions, where buzzes in qb most frequently oc-
cur, accuracy on original test questions rises quicker than the adversarially authored
ones. For both, the accuracy rises towards the end as the clues become “give-aways”.

6.5.2 Second Round Attacks: RNN Adversarial Questions are Brittle
In the second round, the authors also attack an rnn model. All models tested

in the second round are trained on a larger dataset (§6.3.2).
A similar trend holds for ir adversarial questions in the second round (Fig-

ure 6.5): a question that tricks the ir system also fools the two neural models (i.e.,
adversarial examples transfer). For example, the dan model was never targeted but
had substantial accuracy decreases in both rounds.

However, this does not hold for questions written adversarially against the
rnn model. On these questions, the neural models struggle but the ir model is
largely unaffected (Figure 6.5, right).
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Figure 6.4: The first round of adversarial writing attacks the ir model. Like regular
test questions, adversarially authored questions begin with difficult clues that trick
the model. However, the adversarial questions are significantly harder during the
crucial middle third of the question.
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Figure 6.5: The second round of adversarial writing attacks the ir and rnn models.
The questions targeted against the ir system degrade the performance of all models.
However, the reverse does not hold: the ir model is robust to the questions written
to fool the rnn.

6.5.3 Humans vs. Computer, Live (again)!
In the offline setting (i.e., no pressure to “buzz” before an opponent) models

demonstrably struggle on the adversarial questions. But, what happens in standard
qb: live, head-to-head games?

We run two live humans vs. computer matches. The first match uses ir
adversarial questions in a forty question, tossup-only qb format. We pit a human
team of national-level qb players against the Studio Ousia model (Yamada et al.,
2018b), the current state-of-the-art qb system. The model combines neural, ir,
and knowledge graph components (details in Appendix D.2), and won the 2017
nips shared task, defeating a team of expert humans 475–200 on regular qb test
questions. Although the team at our live event was comparable to the nips 2017
team, the tables were turned: the human team won handedly 300–30.

Our second live event is significantly larger: seven human teams play against
models on over 400 questions written adversarially against the rnn model. The
human teams range in ability from high school qb players to national-level teams
(Jeopardy! champions, Academic Competition Federation national champions, top
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Figure 6.6: Humans find adversarially authored question about as difficult as normal
questions: rusty weekend warriors (Intermediate), active players (Expert), or the
best trivia players in the world (National).
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Figure 6.7: The accuracy of the state-of-the-art Studio Ousia model degrades on the
adversarially authored questions despite never being directly targeted. This verifies
that our findings generalize beyond the rnn and ir models.

scorers in the World Quizzing Championships). The models are based on either ir
or neural methods. Despite a few close games between the weaker human teams
and the models, humanity prevailed in every match.7

Figures 6.6–6.7 summarize the live match results for the humans and Ousia
model, respectively. Humans and models have considerably different trends in an-
swer accuracy. Human accuracy on both regular and adversarial questions rises
quickly in the last half of the question (curves in Figure 6.6). In essence, the “give-
away” clues at the end of questions are easy for humans to answer.

On the other hand, models on regular test questions do well in the first half,
i.e., the “difficult” clues for humans are easier for models (Regular Test in Figure 6.7).
However, models, like humans, struggle on adversarial questions in the first half.

7Videos available at http://trickme.qanta.org.
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Adversarial Regular

Unigram overlap 0.40 0.37
Bigram overlap 0.08 0.05
Longest n-gram over-
lap

6.73 6.87

Average ne overlap 0.38 0.46
ir Adversarial 0.35
rnn Adversarial 0.44

Total Words 107.1 133.5
Total ne 9.1 12.5

Table 6.2: The adversarially authored questions have similar n-gram overlap to the
regular test questions. However, the overlap of the named entities (ne) decreases
for ir Adversarial questions.

6.6 What Makes Adversarially-authored Questions Hard?

This section analyzes the adversarially authored questions to identify the
source of their difficulty.

6.6.1 Quantitative Differences in Questions
One possible source of difficulty is data scarcity: the answers to adversarial

questions rarely appear in the training set. However, this is not the case; the mean
number of training examples per answer (e.g., George Washington) is 14.9 for the
adversarial questions versus 16.9 for the regular test data.

Another explanation for question difficulty is limited “overlap” with the train-
ing data, i.e., models cannot match n-grams from the training clues. We measure the
proportion of test n-grams that also appear in training questions with the same an-
swer (Table 6.2). The overlap is roughly equal for unigrams but surprisingly higher
for adversarial questions’ bigrams. The adversarial questions are also shorter and
have fewer nes. However, the proportion of named entities is roughly equivalent.

One difference between the questions written against the ir system and the
ones written against the rnn model is the drop in nes. The decrease in nes is
higher for ir adversarial questions, which may explain their generalization: the rnn
is more sensitive to changes in phrasing, while the ir system is more sensitive to
specific words.

6.6.2 Categorizing Adversarial Phenomena
We next qualitatively analyze adversarially authored questions. We manually

inspect the author edit logs, classifying questions into six different phenomena in
two broad categories (Table 6.3) from a random sample of 100 questions, double
counting questions into multiple phenomena when applicable.
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Composing Seen Clues 15%
Logic & Calculations 5%
Multi-Step Reasoning 25%

Paraphrases 38%
Entity Type Distractors 7%
Novel Clues 26%

Total Questions 1213

Table 6.3: A breakdown of the phenomena in the adversarially authored dataset.

6.6.3 Adversarial Category 1: Reasoning
The first question category requires reasoning about known clues (Table 6.4).

Composing Seen Clues: These questions provide entities with a first-order rela-
tionship to the correct answer. The system must triangulate the correct answer by
“filling in the blank”. For example, the first question of Table 6.4 names the place of
death of Tecumseh. The training data contains a question about his death reading
“though stiff fighting came from their Native American allies under Tecumseh, who
died at this battle” (The Battle of the Thames). The system must connect these
two clues to answer.

Logic & Calculations: These questions require mathematical or logical opera-
tors. For example, the training data contains a clue about the Battle of Thermopylae:
“King Leonidas and 300 Spartans died at the hands of the Persians”. The second
question in Table 6.4 requires adding 150 to the number of Spartans.

Multi-Step Reasoning: This question type requires multiple reasoning steps be-
tween entities. For example, the last question of Table 6.4 requires a reasoning step
from the “I Have A Dream” speech to the Lincoln Memorial and then another rea-
soning step to reach Abraham Lincoln.

6.6.4 Adversarial Category 2: Distracting Clues
The second category consists of circumlocutory clues (Table 6.5).

Paraphrases: A common adversarial modification is to paraphrase clues to re-
move exact n-gram matches from the training data. This renders our ir system
useless but also hurts the neural models. Many of the adversarial paraphrases go
beyond syntax-only changes (e.g., the first row of Table 6.5).
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Question Prediction Answer Phenomenon
This man, who died
at the Battle of the
Thames, experienced a
setback when his brother
Tenskwatawa’s influence
over their tribe began to
fade.

Battle of Tippecanoe Tecumseh Composing
Seen Clues

This number is one hun-
dred fifty more than the
number of Spartans at
Thermopylae.

Battle of Thermopylae 450 Logic &
Calcula-
tions

A building dedicated to
this man was the site of
the “I Have A Dream”
speech.

Martin Luther King Jr. Abraham Lincoln Multi-Step
Reasoning

Table 6.4: The first category of adversarially authored questions consists of exam-
ples that require reasoning. Answer displays the correct answer (all models were
incorrect). For these examples, connecting the training and adversarially authored
clues is simple for humans but difficult for models.

Entity Type Distractors: Whether explicit or implicit in a model, one key com-
ponent for qa is determining the answer type of the question. Authors take advan-
tage of this by providing clues that cause the model to select the wrong answer
type. For example, in the second question of Table 6.5, the “lead-in” clue implies
the answer may be an actor. The rnn model answers Don Cheadle in response
despite previously seeing the Bill Clinton “playing a saxophone” clue in the training
data.

Novel Clues: Some adversarially authored questions are hard not because of
phrasing or logic but because our models have not seen these clues. These questions
are easy to create: users can add Novel Clues that—because they are not uniquely
associated with an answer—confuse the models. While not as linguistically in-
teresting, novel clues are not captured by Wikipedia or qb data, thus improving
the dataset’s diversity. For example, adding clues about literary criticism (Hard-
wick, 1967; Watson, 1996) to a question about Lillian Hellman’s The Little Foxes:
“Ritchie Watson commended this play’s historical accuracy for getting the price for
a dozen eggs right—ten cents—to defend against Elizabeth Hardwick’s contention
that it was a sentimental history.” Novel clues create an incentive for models to use
information beyond past questions and Wikipedia.

Novel clues have different effects on ir and neural models: while ir models
largely ignore them, novel clues can lead neural models astray. For example, on
a question about Tiananmen Square, the rnn model buzzes on the clue “World
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Set Question Prediction Phenomenon
Train Name this sociological phenomenon, the

taking of one’s own life.
Suicide Paraphrase

Adv Name this self-inflicted method of death. Arthur Miller
Train Clinton played the saxophone on The

Arsenio Hall Show.
Bill Clinton

Adv He was edited to appear in the film “Con-
tact”. . . For ten points, name this American
president who played the saxophone on an
appearance on the Arsenio Hall Show.

Don Cheadle Entity
Type Dis-
tractor

Table 6.5: The second category of adversarial questions consists of clues that are
present in the training data but are written in a distracting manner. Training shows
relevant snippets from the training data. Prediction displays the rnn model’s answer
prediction (always correct on Training, always incorrect on Adversarial).

One of these concepts . . . a Hyperbola is a type of, for ten points, what shapes
made by passing a plane through a namesake solid,
that also includes the ellipse, parabola?
whose area is given by one-third Pi r squared times height?
Prediction: Conic Section (3) → Sphere (7 )

Figure 6.8: The interpretation successfully aids an attack against the ir system.
The author removes the phrase containing the words “ellipse” and “parabola”, which
are highlighted in the interface (shown in bold). In its place, they add a phrase
which the model associates with the answer Sphere.

Economic Herald”. However, adding a novel clue about “the history of shaving”
renders the brittle rnn unable to buzz on the “World Economic Herald” clue that
it was able to recognize before.8 This helps to explain why adversarially authored
questions written against the rnn do not stump ir models.

6.7 How Do Interpretations Help?

This section explores how model interpretations help to guide adversarial au-
thors. We analyze the question edit log, which reflects how authors modify questions
given a model interpretation.

A direct edit of the highlighted words often creates an adversarial example
(e.g., Figure 6.8). Figure 6.9 shows a more intricate example. The left plot shows
the Question Length, as well as the position where the model is first correct (Buzzing
Position, lower is better). We show two adversarial edits. In the first (1), the author

8The “history of shaving” is a tongue-in-cheek name for a poster displaying the hirsute leaders
of Communist thought. It goes from the bearded Marx and Engels, to the mustachioed Lenin and
Stalin, and finally the clean-shaven Mao.
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In his speeches this . . . As a Senator,
� this man supported Paraguay in the
Chaco War, believing Bolivia was backed
by Standard Oil.
+ this man’s campaign was endorsed by
Milo Reno and Charles Coughlin.
Prediction: Huey Long (3) ! Huey Long (3)

In his speeches this . . . As a Senator, this man’s
campaign was endorsed by Milo Reno and
� Charles Coughlin.
+ a Catholic priest and radio show host.
Prediction: Huey Long (3) ! Huey Long (3)

Figure 6: An failed attempt to trick the neural
model. The user modified the question multiple
times, replacing words suggested by the interpreta-
tion, but was unable to break the system.

The BioLIp database stores data on the
interaction of these species with proteins.
Examples of these molecules with C2 symme-
try can increase enantioselectivity, as in their
Josiphos variety. . .
Prediction: Ion (7) ! Ligand (3)

Examples of these molecules species with C2
symmetry can increase enantioselectivity, as in
their Josiphos variety. . .
Prediction: Ligand (3) ! Ion (7)

Figure 7: An failed attempt to trick the neural
model. The user modified the question multiple
times, replacing words suggested by the interpreta-
tion, but was unable to break the system.

and predictions to aid in the generation of chal-
lenging examples. This new annotation method is
salient given the difficulty of collecting large-scale
datasets that do not contain superficial clues mod-
els can use to “game” a task (Gururangan et al.,
2018; Chen et al., 2016). Our adversarial writing
framework alleviates these annotation artifacts by
exposing model pathologies (and their learned arti-
facts) during the data annotation process.

While our adversarial writing setup requires
clear interpretations of a model, annotators can
still generate challenging examples for neural sys-
tems even using IR output. The effort required from
annotators increases during the adversarial writing
process, as they may need to rewrite an example

numerous times. However, better model interpre-
tation techniques and visualizations can ease this
burden.

Another benefit of leveraging human adversaries
is that they can generate examples that are more di-
verse than automatic methods (Jia and Liang, 2017;
Iyyer et al., 2018). This diversity provides insight
into numerous model limitations, rather than a sin-
gle one. Combining these two approaches, perhaps
by training models to mimic user edit history, could
be fruitful to explore in future work.

9 Related Work

Creating evaluation datasets to get a fine-grained
analysis of particular linguistics features or model
attributes has been explored in past work. The
LAMBADA dataset tests a model’s ability to under-
stand the broad contexts present in book passages
(Paperno et al., 2016). Other work focuses on natu-
ral language inference, where challenge examples
highlight existing model failures (Wang et al., 2018;
Glockner et al., 2018; Naik et al., 2018). Our work
is unique in that we use human as adversaries to ex-
pose model weaknesses, which provides a diverse
set of phenomena (from paraphrases to multi-hop
reasoning) that models can’t solve.

Other work has explored specific limitations
of NLP systems. Rimell et al. (2009) show that
parsers struggle on test examples with unbounded
dependencies. A closely related work to ours is
Ettinger et al. (2017) who also use humans as ad-
versaries. Unlike their Build-it Break-it setting, we
have a ready-made audience of “breakers” who are
motivated and capable of generating adversarial ex-
amples. Our work also differs in that we use model
interpretation methods to facilitate the breaking in
an collaborative manner.

Finally, we discussed recent work on adversarial
NLP attacks in Section ??. These types of input
modifications target one specific type of phenom-
ena (e.g., syntatic modifications). These methods
are a complementary strategy to adversarial evalua-
tion of NLP models.

10 Conclusion

It is difficult to automatically expose the limitations
of a machine learning system, especially when that
system solves a fixed held-out evaluation set. In
our setup, humans try to break a trained system. By
supporting this breaking process with interpretation
methods, users can understand what a model is

1 2

1

2

Figure 6.9: The Question Length and the position where the model is first correct
(Buzzing Position, lower is better) are shown as a question is written. In (1), the
author makes a mistake by removing a sentence that makes the question easier for
the ir model. In (2), the author uses the interpretation, replacing the highlighted
word (shown in bold) “molecules” with “species” to trick the rnn model.

removes the first sentence of the question, which makes the question easier for the
model (buzz position decreases). The author counteracts this in the second edit (2),
where they use the interpretation to craft a targeted modification which breaks the
ir model.

In his speeches this . . . As a Senator,
this man supported Paraguay in the
Chaco War, believing Bolivia was backed by Standard Oil.
this man’s campaign was endorsed by Milo Reno and Charles Coughlin.
Prediction: Huey Long (3) → Huey Long (3)

In his speeches this . . . As a Senator, this man’s campaign was endorsed by Milo
Reno and
Charles Coughlin.
a Catholic priest and radio show host.
Prediction: Huey Long (3) → Huey Long (3)

Figure 6.10: A failed attempt to trick the neural model. The author modifies
the question multiple times, replacing words suggested by the interpretation, but is
unable to break the system.

However, models are not always this brittle. In Figure 6.10, the interpretation
fails to aid an adversarial attack against the rnn model. At each step, the author
uses the highlighted words as a guide to edit targeted portions of the question yet
fails to trick the model. The author gives up and submits their relatively non-
adversarial question.
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6.7.1 Interviews With Adversarial Authors

We also interview the adversarial authors who attended our live events.9 Mul-
tiple authors agree that identifying oft-repeated “stock” clues was the interface’s
most useful feature. As one author explained, “There were clues which I did not
think were stock clues but were later revealed to be”. In particular, the author’s
question about the Congress of Vienna used a clue about “Kraków becoming a free
city”, which the model immediately recognized.

Another interviewee was Jordan Brownstein,10 a national qb champion and
one of the best active players, who felt that computer opponents were better at
questions that contained direct references to battles or poetry. He also explained
how the different writing styles used by each qb author increases the difficulty
of questions for computers. The interface’s evidence panel allows authors to read
existing clues which encourages these unique stylistic choices.

6.8 Related Work

New datasets often allow for a finer-grained analysis of a linguistic phenomenon,
task, or genre. The lambada dataset (Paperno et al., 2016) tests a model’s under-
standing of the broad contexts present in book passages, while the Natural Ques-
tions corpus (Kwiatkowski et al., 2019) combs Wikipedia for answers to questions
that users trust search engines to answer (Oeldorf-Hirsch et al., 2014). Other work
focuses on natural language inference, where challenge examples highlight model
failures (Wang et al., 2019b; Glockner et al., 2018; Naik et al., 2018). Our work is
unique in that we use human adversaries to expose model weaknesses, which pro-
vides a diverse set of phenomena (from paraphrases to multi-hop reasoning) that
models cannot solve.

Other work puts an adversary in the data annotation or postprocessing loop.
For instance, Dua et al. (2019) and Zhang et al. (2018b) filter out easy questions
using a baseline qa model, while Zellers et al. (2018) use stylistic classifiers to filter
language inference examples. Rather than filtering out easy questions, we instead
use human adversaries to generate hard ones. Similar to our work, Ettinger et al.
(2017) use human adversaries. We extend their setting by providing humans with
model interpretations to facilitate adversarial writing. Moreover, we have a ready-
made audience of question writers to generate adversarial questions.

The collaborative adversarial writing process reflects the complementary abili-
ties of humans and computers. For instance, “centaur” chess teams of both a human
and a computer are often stronger than a human or computer alone (Case, 2018).
In Starcraft, humans devise high-level “macro” strategies, while computers are su-
perior at executing fast and precise “micro” actions (Vinyals et al., 2017). In nlp,
computers aid simultaneous human interpreters (He et al., 2016a) at remembering
forgotten information or translating unfamiliar words.

9Interviews at https://youtu.be/MzM1oNsm8MQ.
10https://www.qbwiki.com/wiki/Jordan_Brownstein
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Other approaches to adversarial evaluation of nlp models (Section 6.2) typ-
ically target one phenomenon (e.g., syntactic modifications) and complement our
human-in-the-loop approach. Since the original collection of this adversarial dataset,
several other datasets have incorporated a similar adversarial human-in-the-loop
mechanism (§2.2.3).

6.9 Conclusion

One of the challenges of machine learning is knowing why systems fail. This
work brings together two threads that attempt to answer this question: visualiza-
tions and adversarial examples. Visualizations underscore the capabilities of existing
models, while adversarial examples—crafted with the ingenuity of human experts—
show that these models are still far from matching human prowess.

Our experiments with both neural and ir methodologies show that qa models
still struggle with synthesizing clues, handling distracting information, and adapting
to unfamiliar data. Our adversarially authored dataset is only the first of many
iterations (Ruef et al., 2016). As models improve, future adversarially authored
datasets can elucidate the limitations of next-generation qa systems.

While we focus on qa, our procedure is applicable to other nlp settings where
there is (1) a pool of talented authors who (2) write text with specific goals. Future
research can look to craft adversarially authored datasets for other nlp tasks that
meet these criteria. For tasks without access to experts, subsequent work in a similar
spirit has shown centaur authorship to still be helpful (§2.2.3). In next chapter we
also discuss the role of adversarial authorship as one (very useful) tool in the dataset
construction toolbox.

Throughout this thesis we improve qa evaluation: this chapter focuses on
improving evaluation data so that it more robustly tests qa models for intelligent
behavior. In the next chapter, we combine ideas from adversarial centaur authorship
with the irt model developed in Chapter 4 and propose future work to further
guide human authors towards writing more discriminative questions. While building
towards this future work, we describe a larger view of dataset construction and
position centaur authorship as one tool in a greater toolbox for creating better
evaluation data.
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Chapter 7: Conclusion

The proliferation of competing articulations, the willingness to
try anything, the expression of explicit discontent, the recourse
to philosophy and to debate the fundamentals, all these are
symptoms of a transition from normal to extraordinary research.

Thomas S. Kuhn on Paradigm Shifts
The Structures of Scientific Revolutions

We began this thesis by introducing a new conceptual framework for under-
standing two branches of qa that have similar yet distinct goals (Chapter 2). The
first centers on satisfying users of information-seeking systems (Cranfield paradigm)
while the second aims to build qa systems that exhibit intelligent behavior (Manch-
ester paradigm). At the core of this framework is exploring: for what purpose are
we building qa datasets, models, and evaluations?

Although these goals overlap, they motivate very different research agendas.
For example, in curiosity-driven information-seeking (Chapter 3), user satisfaction
goes beyond whether an answer is correct, but to whether the answer inspires user
engagement through followup inquiry. This is quite different from Quizbowl where
qa systems (or humans) should yield the correct answer, for the correct reason
(Chapter 5). Neither paradigm is superior to the other, but we should recognize
that their goals are different. For example, adversarially authored questions (Chap-
ter 6) are based on the (Manchester) idea that qa models should correctly answer
conceptually similar questions, even if worded differently—otherwise, it would indi-
cate a lack of understanding.1

After identifying this paradigm difference, we explore ways to improve qa
evaluations through better data and formats. In particular, one problem this the-
sis addresses is that since current qa evaluations are static and unchanging, they
are less discriminative. Our improvements are grounded in the idea that as qa
models continue to improve, that evaluations should have built-in mechanisms for
retaining the ability to distinguish between better and worse models. Quizbowl, for
example, retains discriminative ability through its incremental format (Chapter 5).
Rather than the binary correct/wrong distinction of other tasks, qb is unique in
that questions—by construction—test for multiple ability levels so take longer to
become “stale.” In cases where we do not control the “freshness” of examples, we
advocate using testing methodologies like Item Response Theory to dynamically

1However, answering correctly does not necessarily imply understanding.
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score models (Chapter 4). However, these ideas are only a beginning in rethinking
how evaluations can best support qa research.

Just as trec shaped the direction of ir research (Voorhees et al., 2005),
shared benchmark tasks have shaped the course of machine learning and nlp re-
search (Dotan and Milli, 2020). To make an analogy, shared tasks are akin to large
and expensive shared experiments, instrumentation, and laboratories in the physi-
cal sciences like the Human Genome Project, telescopes (e.g., Hubble and Keppler),
particle colliders such as the lhc, and the International Space Station. These shared
resources set the course of research for many years at a time and reflect the scientific
priorities and values of their creators. As an example, the investment in qa within
trec “generated a resurgence of research on question answering” (Voorhees et al.,
2005, p. 12). Taking a wider view, arguably the Cranfield experiments (Cleverdon,
1967) began a Kuhnian paradigm shift (Kuhn, 2012)2 in ir and eventually nlp
that was subsequently accelerated by trec. A similar shift occurred in machine
learning more broadly with “the unreasonable effectiveness of data” (Halevy et al.,
2009) which was further accelerated by ever-growing datasets (Sun et al., 2017) and
computational resources (Kaplan et al., 2020).

However, there is increasing awareness that these successes are not without
their dangers, whether it is in nlp (Hovy and Spruit, 2016; Bender et al., 2021)
or adjacent fields like computer vision (Birhane and Prabhu, 2021). Across both
of these fields, the dangers and harms include, but are certainly not limited to
propagating the racial (Blodgett et al., 2016; Buolamwini and Gebru, 2018; Merullo
et al., 2019) and gender (Cao and Daumé, 2020) biases of society (Friedman and
Nissenbaum, 1996). This is most prominently seen in the creation of the acm
Conference on Fairness, Accountability and Transparency in 2018, along with the
veritable wealth of work in the analysis, interpretation, and evaluation of neural
models (Belinkov and Glass, 2019). Thus, we are arguably at the precipice of another
Khunian paradigm shift towards evaluation that looks beyond optimizing headline
benchmark numbers in chase of state-of-the-art effectiveness (Linzen, 2020), and
towards a paradigm that incorporates the use and impact of nlp models (Mitchell
et al., 2019; Blodgett et al., 2020) into evaluations. Next, we propose how shared
benchmark tasks (leaderboards) can fuse the ideas of this thesis with these values
to improve qa evaluation.

In both industrial practice (Holstein et al., 2019) and academic benchmark
tests, a potent place to intervene is in the construction of datasets and benchmark
tasks since this often sets the research agenda for many years thereafter and how
data is curated has substantial real-world impacts (Rogers, 2021). For example, the
first iteration of the EfficientQA shared task (Min et al., 2021) explicitly incorpo-
rated efficiency as a core value (Schwartz et al., 2020) which yielded substantially

2Thomas Kuhn’s concept of paradigm shifts posits that science proceeds in four phases: (1)
normal, incremental science under an established paradigm (e.g., Newtonian Mechanics), (2) in an
attempt to explain significant anomalies in the current paradigm, extraordinary research rapidly
pushes the boundaries of science forward under a new paradigm (e.g., General Relativity), (3) the
new and old paradigms are debated for which “should in the future guide research problems” (Kuhn,
2012, p. 157), and (4) the new paradigm becomes the dominant paradigm.
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smaller systems (Lewis et al., 2021). The remainder of this thesis outlines two larger
directions for future work and several extensions. The first two directions build on
the ideas of dynamically updating evaluation (Chapters 4 and 6) and rethinking how
various stakeholders should engage with leaderboards. The subsequent extensions
focus on adapting additional irt methodology into nlp evaluations.

7.1 Future Work: Living Evaluations

A central theme of this thesis is improving the discriminative power evalua-
tions through additional annotation (Chapter 3), dynamically weighting examples
(Chapter 4), incremental and pyramidal formats (Chapter 5), and adversarial eval-
uation data (Chapter 6). These are all in service of a greater vision that evaluations
should—from the onset—be built to evolve as progress is made on the task(s) of
interest.

Conceptually, these and other methods are tools in a larger toolbox of ways
to improve the efficacy of evaluations. Taking this analogy further, our toolbox is
somewhat disorganized. Although each particular tool may bias the data in one way
or another, they are all useful since they still expand the scope of natural language
phenomena that we test. We envision a data collection and evaluation framework
that combines Item Response Theory and adversarial annotation in a format where
examples test one or more levels of knowledge.

7.1.1 Incorporating Content Models into irt Models
The first step towards this framework builds on the idea of irt for qa evalua-

tion by incorporating a content model. A glaring drawback of standard irt methods
is that to infer example properties such as difficulty or discriminability, they require
scored predictions from at least a few models. Suppose we obtain a new example
that is nearly identical to an existing example. To irt, these examples have no rela-
tionship until we infer it by seeing that models perform similarly on both examples.
The missing ingredient is a content model to tell us that these examples are similar
and thus should have similar irt properties.

For inspiration, we look towards political science where Ideal Point Mod-
els (Poole and Rosenthal, 1985)—which are mathematically equivalent to irt—are
used to predict the political leanings of legislators (“subjects”) based on their voting
records (“responses”) on bills (“items”). As in our case, political scientists also en-
deavour to incorporate the textual similarities of bills to infer voting patterns (Ger-
rish and Blei, 2011; Nguyen et al., 2015; Kraft et al., 2016).

To combine content models with irt models, we propose two extensions to the
irt model in Chapter 4: (1) integrating example metadata (Card et al., 2018) like
topical category and (2) incorporating a topic model (Blei et al., 2003). As with
any Bayesian model, the primary changes will be to the generative story (§4.2).
For metadata like topical category, we will assume an uninformative prior distribu-
tion and make previously entirely latent variables like difficulty and skill depend on
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the metadata prior. For example, each topical category could be associated with
independent mean difficulties, which would allow the model to associate particu-
lar topical categories with different difficulty distributions (e.g., perhaps literature
questions are more difficult).

The second extension builds on this concept by integrating a topic model into
the irt model. Specifically, we link the irt and topic models through the latent
properties of items like difficulty and discriminability. Since it is reasonable to
presume that specific concepts have intrinsic difficulties, the latent difficulty of a
particular example should inform both which topic is selected and the words used
in that example. Thus, as before the generative story first draws the properties and
then draws the values for dependent random variables—in this case, the responses
and topic model features. In both extensions, standard methods for inferring distri-
butions of new “documents” (examples) could be applied to solve the problem that
standard irt treats each example as an entirely new data point. However, they also
provide the additional benefit of improving the interpretability of irt models, which
we use next to guide example creation.

7.1.2 Guiding Example Creation
Perhaps the most ambitious version of an irt-based tool for creating examples

is one that does it all: users specify the desired difficulty of a question, and the
tool outputs the example. However, a major challenge with this approach is that
generating coherent text is a hard problem in its own right.

We avoid this challenge and instead propose a tool that uses content-based irt
models to guide human annotators in creating new examples. During annotation, the
content-based irt model could infer example characteristics (e.g., topic category)
that increase the likelihood of matching a pre-specified difficulty. For example,
perhaps questions of a particular topic or that mention particular words or entities
tend to be easy. As with centaur authoring (Chapter 6), this combines the strengths
of machines like inferring distributional statistics with the strengths of humans like
authoring questions.

For this task, the metadata-based and topic-based views have complementary
strengths. The topic-based irt models provide finer-grained word-level guidance but
have the drawback that they can only suggest words seen during training. Perhaps
history questions mentioning “Taíno” tend to be more difficult, but if a model does
not see it during training it cannot suggest it. To cover for this weakness, metadata
models could specify properties like the topical category or the entity type of the
answer, which could help human annotators narrow down the type of question to
write. Although the irt model synthesizes which types of questions leaderboard
models find easy or hard, it is not a direct replacement for having a model-in-the-
loop to test if questions are too easy (and thus potentially useless). In Chapter 6,
although we employed multiple models, they were not used at the same time; in
this followup work, we propose using multiple models from the leaderboard for
adversarial checking, which would also provide feedback to the irt model. Although
we certainly should collect new examples as leaderboards evolve, we should not so
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readily commit underperforming examples to the deep.

7.1.3 Tender Loving Care for Underperforming Examples
An important step towards improving evaluations is not simply collecting new

datasets to fix the problems of existing datasets, but fixing problems in existing
datasets. Towards this goal, methods like irt and those that derive this from train-
ing dynamics (Swayamdipta et al., 2020; Pleiss et al., 2020) identify “bad examples.”
In a living evaluation, “bad examples” are sent to annotators where they are either
discarded as unfixable or fixed through editing. A third possibility exists though,
an example could be perfectly reasonable, just too easy.

7.1.4 Multi-Examples
For examples that are “too easy,” it is difficult to know whether the underlying

linguistic, knowledge, or reasoning skill being tested is genuinely too easy or if simply
this particular instance is too easy. An elegant solution to this problem is to test
the concept of interest multiple times and only mark it correct if all variations are
correct. As Chapter 5 discusses, qb questions test knowledge multiple times, with
unique aspects that each subsequent test is easier and easier. qb’s version of this
idea is that if a model answers a question correctly at certain position, it should also
answer the question correctly at all subsequent points; this intuition is encoded in
the expected wins metric (§5.7.1). Gardner et al. (2020a) introduces a similar idea
where expert annotators create multiple versions of test examples, and examples
are only marked correct if all sub-examples are correct. Our proposal is rather than
selecting these examples randomly, that we prioritize transforming weak examples
into multi-examples.

7.1.5 Effects of Continually Updating Evaluations
A substantial “drawback” of living evaluations is that precisely because they

are ever-changing, it is more challenging to compare models across time. Perhaps
a current state-of-the-art model today is no longer state-of-the-art tomorrow once
bad examples are fixed or transformed into multi-examples.

First, we can mitigate this problem by requiring that runnable models are
submitted to leaderboards. This is already done by several tasks such as (e.g.,
squad and NaturalQuestions) and should be adopted more broadly (Crane, 2018).
Since runnable models are submitted, leaderboard organizers can rerun models as
evaluation data change. A secondary benefit of this requirement is improved repro-
ducibility; reproducing evaluation predictions and scores becomes trivial.

Second, perhaps a continually updating evaluation will discourage research
that solely optimizes metrics without providing insight into why a method works (Linzen,
2020). Even in industry applications where effectiveness may hold more sway, it is
still important to understand the contributions and limitations of methods, other-
wise we risk unpredictable and potentially harmful deployments (Buolamwini and
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Gebru, 2018; Wallace et al., 2019a; Carlini et al., 2020). We will soon take this
idea further and propose ways to change leaderboards so that they naturally en-
courage deeper inspection of data and models at both single-model scale and across
all models.

7.1.6 Model Cards
Several authors advocate for more detailed reporting of model characteris-

tics (Mitchell et al., 2019) and associated training data (Gebru et al., 2018; Bender
and Friedman, 2018). Their motivation—which we whole-heartedly agree with—is
to improve transparency and accountability, and documenting models when submit-
ting to leaderboards should be required. Although to some this may seem onerous
and cumbersome, we can make it more attractive to model developers by providing
something in return. Thus far, we have discussed ways to incorporate information
about the content of examples into irt, but have not considered integrating model
properties.

In ir, Query Performance Prediction (Carmel and Yom-Tov, 2010) infers the
characteristics of models that are most predictive of system effectiveness for partic-
ular inputs (queries). As a starting place, self-reported data from model cards (e.g.,
architecture, number of parameters, datasets used during training) could provide
information for irt or other similar methods to use. This information could be
incorporated into the irt generative story or analyzed as with standard statistical
methods like inspecting feature importances of a linear model. By requiring runnable
models though, we also open the door to more sophisticated analysis that might use
aggregate data like score distributions or robustness to newly annotated examples.
If leaderboards helped model developers determine which characteristics—across all
submitted models—are most effective then it may provide intrinsic incentive for
good model documentation. Next, we further develop the idea that leaderboards
should do more than rank models according to one or more metrics.

7.2 What More Should Leaderboards Do?

Taking a broader perspective, leaderboards are truly shared tasks in disguise.
When benchmarks like squad are adopted by a community they implicitly become
shared tasks. Shared tasks—whether they are explicitly or implicitly created—
have been instrumental to progress to nlp in areas like speech recognition (Pallett,
2003), information retrieval (Voorhees et al., 2005), and question answering. Nissim
et al. (2017) succinctly describe nlp shared tasks as revolving “around two aspects:
research advancement and competition. [They] see research advancement as the
driving force and main goal behind organizing them. Competition is an instrument
to encourage and promote participation. However, just because these two forces are
intrinsic to shared tasks does not mean that they always act in the same direction.”

Leaderboardized shared tasks have swung too far towards optimization of tar-
get effectiveness metrics. While this has certainly driven rapid progress in nlp
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modeling, as Bender et al. (2021) argues,

Where much effort has been allocated to making models (and their train-
ing data) bigger and to achieving ever higher scores on leaderboards often
featuring artificial tasks, we believe there is more to be gained by focus-
ing on understanding how machines are achieving the tasks in question.

Sadly, sometimes it is because of competition that shared task participants who do
not win feel describing their systems or insights is not worth their time (Parra Es-
cartín et al., 2017; Pedersen, 2019). At the same time, while there has been a great
interest in the analysis of nlp models (Belinkov and Glass, 2019) and providing
tooling to test robustness (Goel et al., 2021), there has not yet been an effort to
close the loop and bringing these elements into benchmark tasks and thus into the
view of model developers (Linzen, 2020). We argue that leaderboards should play a
central role in re-aligning their implementation with their original intent: to advance
research.

Our re-imagining of leaderboards takes inspiration from computer visualization
by identifying (1) the stakeholders of leaderboards, (2) the goals of these stakeholders
expressed as abstract tasks, and (3) how leaderboard components contribute towards
these tasks (Munzner, 2014, p. 43–45). We will first introduce the stakeholders and
then discuss how each of their goals are satisfied in one or more of three leader-
board visualizations. These three visualizations include a ranking-centric view, a
model-centric view, and an example-centric view. By re-designing leaderboards with
explicit goals in mind, we can use software tooling as a means to lower the barriers
in achieving those research goals (Myers et al., 2000).

7.2.1 Stakeholders
Ethayarajh and Jurafsky (2020) take a similar user-centric approach to de-

fine the utility of leaderboards, but limit their analysis to nlp practitioners who
submitted their models to leaderboards. Here, we take a wider view inspired by
value-sensitive design (Friedman et al., 2008) and identify several direct and indi-
rect leaderboard stakeholders, including the public, academia, industry, participants,
and task organizers.

The Public To the press and thus the public, leaderboards are a prominent means
to communicate progress in ai technology but carry the risk of overstating the
capabilities and understating the limitations of such technology. Focusing on the
public as a stakeholder, leaderboards should faithfully communicate the progress
actually made, emphasize its limitations, and convey uncertainty in each of these.
Unsurprisingly, to this stakeholder, the ranking view will have the most importance
(§7.2.2).

Academia The role of leaderboards in academia is—for better or worse—unmistakable:
obtaining state-of-the-art effectiveness is often a means to, if not an implicit require-
ment to publish research papers at top-tier venues. Consequently, this motivates
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some participants to submit models as a step towards publishing papers that ul-
timately earn reputational prestige. With the growth of nlp and adjacent areas
though, this model is unsustainable, and the living evaluation we propose muddies
the entire concept of “state-of-the-art.” Taking a step back, in any re-design of
a rankings view, we should recognize that when optimization of a specific metric
becomes the primary goal—as opposed to the original task—that leaderboards are
vulnerable to the effects of Goodhart’s Law (Strathern, 1997). In their current form,
one value of benchmarks is in unifying evaluation data so that approaches can be
more easily compared—a goal that does not require the selection of specific, pos-
sibly value-laden metrics (Dotan and Milli, 2020). We will argue that they should
also help identify fertile research areas by highlighting characteristics of difficult
examples (§7.2.4) and properties of effective models (§7.2.3).

Industry Where academia is famously data-poor, industry is data-rich, and by
providing suitable data for tasks of interest, industry shapes the course of academic
research. For example, ir datasets like aol search queries (Pass et al., 2006), trec
tasks using commercial search engine queries, ms marco, NaturalQuestions, and
others encourage research where academic and industry interests intersect. Along
similar lines, government programs like iarpa often contribute funding, datasets,
and evaluation metrics to advance research of interest to the us government.3 These
stakeholders are differentiated from academia in that they have a financial incentive
in ensuring that progress on target metrics translates to advances that ultimately
improve products (e.g., the Netflix Prize §7.2.2). Thus, to this stakeholder, the
ability to robustly measure progress resulting in practical impacts is of great value.4

Participants Next are the participants of benchmarks tasks. Since we have al-
ready discussed leaderboards as sota rubber stamps, here we focus on participants
seeking to improve their models. Somewhat paradoxically, leaderboards are perhaps
least supportive of this group; aside from listing effectiveness metrics like accuracy,
they—generally—do not provide any other features. The model-centric (§7.2.3) and
example-centric (§7.2.4) leaderboard views will be designed to help this group find
ways to improve their models.

Organizers Lastly, task organizers are primarily concerned with managing the
lifecycle of the shared task.5 To this group, providing insight into the health of
the benchmark and how to fix issues is key. Towards this goal, features that aid
in identifying and fixing bad examples are helpful. Therefore, to this group, the
example-centric view (§7.2.4) will have the most value. Next, we describe the three
proposed leaderboard webpage views and how they each meet stakeholder goals.

3The iarpa material program supports work in low-resource, multilingual information re-
trieval.

4For example, material evaluation sets are regularly updated, with each using a new low-
resource language to encourage work that is not overly reliant on any specific language pair.

5Here we consider goals independent of their academic or industry role(s).
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7.2.2 Ranking View
The standard role of leaderboards is to facilitate the comparison of models

through aggregated metrics representative of the shared task’s goal(s). In most
cases, there is a single metric of interest such as accuracy, but even when single
metrics reflect the eventual end task as in many industry-sponsored shared tasks,
they seldom integrate the full spectrum of concerns in the end task. In the Netflix
prize (Bennett and Lanning, 2007), both the winning entry and followup made heavy
use of ensemble methods (Koren, 2009) which were too difficult to scalably and
efficiently directly use in production deployments (Amatriain and Basilico, 2012).
That said, the competition was successful in producing research that led Netflix
to incorporate successful innovations into production deployments. The missing
element of the competition is that not all the values of interest were incorporated—
in this case simplicity and efficiency. The first goal we focus on is to reward many
types of research progress by increasing the diversity of metrics used in leaderboards.
First though, we need to identify at least a few metrics to start with.

Metrics To start, we propose that leaderboards should integrate metrics for ef-
fectiveness, robustness, generalizability, efficiency, and fairness. Since effectiveness
metrics are status quo, we will not discuss these beyond noting they should be
appropriate to the end task. Towards motivating efficient ai, the GreenAI initia-
tive (Schwartz et al., 2020) recommends counting the total number of floating-point
operations as a proxy for measuring carbon impact. However, there is plenty of
room for alternatives; for example, the EfficientQA (Min et al., 2021) shared task
focused on decreasing the memory footprint of models which is important for mobile
deployments (Sun et al., 2020). For fairness, we can begin with demographic par-
ity (Barocas et al., 2019, p. 9–10),6 but there are also many alternatives, and each
leaderboard should think critically about which to use. While incorporating these
metrics is not the only way or even the best way to integrate alternative values into
evaluations, it represents a first step.

To integrate a robustness metric, we should make use of the aforementioned
idea of multi-examples (§7.1.4). We initially presented this concept as a way to aug-
ment existing examples through human annotation and requiring all sub-examples
to be correct for the full example to be correct. This also naturally lends itself
as the basis for a robustness metric; for example, the ratio of correct to incorrect
multi-examples could be a robustness metric. In addition to human-created multi-
examples, we should also employ techniques that use rule-based methods to generate
additional examples (Jia and Liang, 2017; Ribeiro et al., 2018). Along similar lines,
behavioral testing (Ribeiro et al., 2020) could also contribute towards a robustness
score while helping to identify capability-based tests.

Generalizability is already a topic of interest in leaderboards through multi-
task leaderboards. Examples include superglue (Wang et al., 2019a) and mrqa (Fisch
et al., 2019). The challenge in these multi-task benchmarks is aggregating multiple

6For example, effectiveness across a pre-defined set of partitions should be the same (e.g.,
accuracy for questions about men versus women).
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Figure 7.1: The ranking view and landing page of leaderboards should convey that
the community values multiple types of progress. By highlighting the models ac-
cording to different metrics, the ranking view de-emphasizes the importance of any
single metric and encourages more thought into deciding what does the concept of
“best model” mean. Lastly, rather than highlight only the highest-scoring models,
we shift towards highlighting clusters of comparable models; for example, group all
models whose scores are not statistically-speaking different.

effectiveness metrics into a single, representative number. The most common ap-
proach averages task scores, but this implicitly assumes that each task is equally
easy. As alluded to earlier (§4.9), dynamically weighting scores by difficulty is a
strength of irt models from Chapter 4. Preliminary experiments (Appendix B.6)
show this has promise, but that correlating task effectiveness with dimensions is
challenging. Conceptually, the problem is that the generative model places no prior
on the distribution of task difficulty in latent space. As future work, we propose
changing the generative story to use Dirichlet priors so that difficulty is more likely
to be concentrated in fewer dimensions (Teh et al., 2006). Additionally, a Bayesian
domain adaptation approach could model per-task parameters separately while ty-
ing them together through a hierarchical Bayesian prior (Finkel and Manning, 2009).
Hopefully, this will improve the interpretability of and thus confidence in using irt
skill parameters as a way to aggregate multi-task effectiveness.

Table of Ranked Models Ultimately, the ranking view needs to contain a table
showing metrics for each model. The question is how to rank models in a way that
does not re-introduce the problems we are trying to mitigate such as sota-chasing
at the expense of everything else (Rogers, 2019). We propose a middle-ground
approach to designing the ranking view.

First, we depart from the standard layout of leaderboards—displaying a ranked
list of models by a metric—and instead show four groups of models (assuming the
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leaderboard evaluates effectiveness, efficiency, fairness, and robustness). This change
serves to de-emphasize the importance of any single metric (and its underlying value)
and place more emphasis on alternative ways to improve models.

Each group shows the top model according to the associated metric but groups
it with all models that are considered comparable (Figure 7.1). For example, a
common problem with current leaderboards is that the difference between top-
performing models tends to be small, even to the point of being statistically in-
distinguishable. In our proposed ranking view, statistical significance is one way
to determine if models are comparable. For an efficiency-based metric, perhaps
model comparability is defined by a pre-specified trade-off between accuracy and
computational cost (e.g., a one-point drop in accuracy is acceptable for ten-point
improvement in runtime). More generally, users (or task organizers) should consider
trade-offs that align with their notions of utility (Ethayarajh and Jurafsky, 2020).

Beyond tabular rankings, we should look towards new ideas in computer visu-
alization. For example, when using mixed utility functions, this information could
be conveyed with a hybrid between a table and a bar chart (Gratzl et al., 2013).

To academia and the public, this design emphasizes that there are multiple
ways to advance research and the importance of balancing these factors. The sec-
ondary benefit of this design is in explicitly integrating uncertainty by identifying
which groups of models are comparable. To industry stakeholders, the leaderboard
better serves their goals by supporting the means to define utility while rewarding
focus on particular aspects of the task (e.g., efficiency versus accuracy). From the
organizer’s perspective, rewarding different kinds of progress may also incentivize a
wider variety of shared task system descriptions.

7.2.3 Model View
Leaderboards should have a model-centric view whose purpose is to guide

model developers in improving their models. Frequently, the development of ml
models is an iterative process of diagnosing problems and fixing them until the
practitioner is satisfied with the quality of the model (Patel et al., 2008a). Thus,
diagnostic tools are a means to “naturally lead developers towards doing the right
thing” (Patel et al., 2008a). Depending on which tools we design, we can guide
developers in different directions. As with the ranking view, there are many exist-
ing visualization techniques for model debugging including interpretations of single
models (Wallace et al., 2019c; Wu et al., 2019), pairwise model comparison (Zhang
et al., 2019), multi-model comparison (Zhang et al., 2019), attribute-based compar-
ison (Arendt et al., 2021), example-based comparison (Amershi et al., 2015), and
others.

Some of these tools should play a role in a model-based view, but a unique
aspect of a leaderboard-based tool is access to all other models. An open challenge in
this area is exploring options that help compare a submitted model to other models
in aggregate (e.g., perhaps by treating other models as an ensemble).

141



7.2.4 Example View
The third view leaderboards should support centers on identifying patterns

in the evaluation data. Since task organizers are concerned with the health of the
shared task, this view should aim to identify and help fix inadequacies of the test
data.

A first step towards this should include incorporating the irt methods used
to identify bad examples (§4.5), but extend to other ways to identify bad examples.
For example, Swayamdipta et al. (2020) use the training dynamics of neural models
to identify hard to learn examples, which often correspond to labeling errors. Since
their method relies on training dynamics, in its standard form, it does not provide
characteristics of development or test examples, but it would be easily modified to
do so. K-fold validation would allow the development data to be used (temporarily)
as training data to produce the desired quality metrics on test data.

The example view should make it easy for organizers or participants to find
these examples and validate whether they are flawed. For private evaluation data,
this obviously must be done by organizers (or annotators), but this seems like a
reasonable cost to pay for better evaluations.

7.3 Future Directions in Item Response Theory for NLP

Thus far, we have briefly covered a few ways to improve irt for nlp; here, we
enumerate two additional directions.

7.3.1 Multidimensional Clustering
A glaring weakness of Chapter 4’s irt models is its reliance on one-dimensional

parameter values. It is quite conceivable that parameters like difficulty and skill
could vary along more than one dimension: say math difficulty and literature diffi-
culty. Although we did train multi-dimensional models (§4.2), initial experimenta-
tion failed to correlate specific dimensions with example features, so we only reported
numerical effectiveness results. An alternative approach to pre-specified features is
clustering models or examples by multi-dimensional irt parameters and doing post-
hoc analysis of clusters.

Ideally, multi-dimensional clustering on a multi-task benchmark like mrqa (Fisch
et al., 2019) would show a relationship between clusters and sub-tasks. Unfortu-
nately, initial investigation (Figure 7.2) shows only limited correlation with one of
the six mrqa tasks. The main challenge of future work is to investigate why it
seems like no particular dimension correlates with specific tasks. Our preliminary
hypothesis is that nothing in the generative model encourages skills associated with
particular tasks to accumulate in a single dimension versus spread equally across
all dimensions. Thus, a modified generative model that uses Dirichlet priors to en-
courage more meaningful latent skill distributions (§7.2.2) may fix this problem and
allow for better empirical investigation of which skills are related to each other.
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Figure 7.2: In mrqa, tsne shows a relationship between whether the task is Nar-
rativeQA with respect to multidimensional difficulty and discriminability. The mul-
tidimensional irt model uses six dimensions to match the six mrqa tasks.

7.3.2 Statistical Testing
In irt, a useful concept is the informativeness of examples towards inferring

a subject’s latent skill (Equation (4.2) in §4.4.5). Chapter 4 uses this to adaptively
select examples for annotation. One may ask a related question: how much informa-
tion (and by extension the number of annotations) is required to estimate a subject’s
skill to a particular precision with a certain degree of confidence? In human testing,
this is important for determining things like how long an exam should be; longer
exams provide more information but are more costly to administer.

This question is directly related to statistical testing in nlp to determine
whether the difference between two systems is statistically significant or insignifi-
cant. Although including such tests in publications is strongly recommended (Dror
et al., 2018), most statistical tests in nlp publications only account for variation
within whole model runs; however, when evaluation sets are shared, it would be
more appropriate to use paired tests that examine how a collection of models score
on shared examples. For example, reasonable statistical tests include Student’s t-
test, the sign test, McNemar’s test, the Wilcoxon signed-rank test (Wilcoxon, 1945)
(previously recommended by Demšar (2006)), Pitman’s permutation test, and the
paired bootstrap test. Card et al. (2020) investigate how these and other statistical
tests are used in nlp and find that in many cases the tests are under-powered (un-
able to distinguish between better and worse models). As we will briefly outline, an
irt-based statistical test brings several unique properties that future work should
characterize empirically compared to existing tests.

The irt tests differ in two significant ways from other tests: (1) it does not
assume that items are equally informative, and (2) it assumes that the informative-
ness of items is a function of the subject’s skill θj. Under these assumptions, each
item provides information about the true value of a subject’s latent skill, and as we
accumulate more evidence, the reliability of this estimate improves (Tague-Sutcliffe,
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1992). As consequence of skill-dependent information, the statistical error associ-
ated with the estimate also varies with skill. In irt, this error is called the standard
error of estimation (see) σ(θ̂|θ) (De Ayala, 2013, p. 30) and is related to the Fisher
information

Ii(θ) =
(p′i)

2

pi(1− pi)
(7.1)

of each item; previously, we used item information to adaptively sample examples
for annotation (§4.4.5). For a 2PL model, information

Ii(θ) = γ2pi(1− pi) (7.2)

is maximized when pi = (1 − pi). Since Fisher information is additive, the infor-
mation of the evaluation set is maximal when items have a 50% chance of being
responded to correctly. As derived by De Ayala (2013, p. 102), the standard error
of estimation

SEE(θ) =

√
1∑
i Ii(θ)

. (7.3)

is computed by accumulating the information gained from each item. Given two
subjects X and Y , the probability distribution of score differences

N(θY − θX , SEE(θX)2 + SEE(θY )2) (7.4)

can be used to compute the probability that the difference in skill is statistically
significant; for example, a difference of greater than two standard errors corresponds
to an α ≤ .05 significance level. Future work should investigate how the different
assumptions the irt test makes influence experimental results. Ultimately, perhaps
the main challenge in this line of work is in determining which statistical test is
“correct,” which is difficult or impossible to determine with real-world data; it is
likely the investigation into comparing these tests will include simulations where
differences are a priori known to be significant or insignificant.

7.4 Reflections and Synthesis

Throughout this thesis, I have woven a story and believe it would be instructive
to explain how I came to that story. As an early PhD student, my first step towards
working on qa evaluation was building the qa system that would eventually defeat
accomplished trivia players in a live exhibition match. Much as this excited me, it
was somewhat unsatisfying that a system built on pattern matching and therefore
distinctly not “intelligent” had been sufficient to defeat skilled humans. This led
to asking “should we interpret the victory of a—by construction—not intelligent
model a success for qa?” and eventually the better question of “how should we
define success for qa?” In an effort to not allow machines to “cheat” their way to
victory through statistical pattern matching, Chapter 6 and its adversarial questions
suggested that if models do not rely on “spurious” correlations, then that is success.
In direct contrast, the Curiosity dataset in Chapter 3 defined success as satisfying the
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user. The missing ingredient through all these questions is that defining success is a
value judgment, and I was attempting to answer this question without considering
values.

This realization led me to develop the idea to view qa through the lenses of
the Cranfield and Manchester paradigms. Crucially, each of these paradigms defines
what it values and by doing so define their own notions of success.

Viewing qa evaluation from the Turing Test inspired Manchester paradigm,
the theoretical underpinnings for qb’s pyramidal and incremental format became
clear. Methodologically speaking, qb tests for multiple, different levels of knowledge
understanding which directly incorporated the idea that questions (clues in qb) are
not equally informative of ability. This line of thought eventually grew into using
irt for qa evaluation, but was not the only reason for adopting irt. The other
attractive feature of irt is the additional insight it gives into the data and models
in leaderboards. By making leaderboards—as a tool—more helpful (i.e., not just
a ranked list of models), perhaps this would accelerate progress towards better qa
systems.

In thinking through how leaderboards might be made more helpful, the ques-
tion of what goals and thus values to optimize for resurfaces. In revisiting the
question, it is also crucial to internalize that widely adopted shared tasks often set
the goals and focus entire communities of research for multiple years at a time. By
identifying stakeholders and what they value, it makes leaderboards more effective
in advancing research. And while we are thinking critically about the values in-
tegrated into leaderboards, we can also prioritize new values—like efficiency and
fairness–and thereby reward research prioritizing those values.

Throughout, the underlying and driving questions in this thesis have been: how
do we define “better” and the necessarily dependent question of how to accurately
measure that. Towards the goal of building qa systems that exhibit intelligent
behavior, this thesis advocates for specific methods to improve the format, data,
and scoring in qa evaluations. Although these methods are perhaps specific to
improving qa evaluations, the broader message of this thesis is to always think
critically about the purpose and goals of computer systems.
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Appendix A: Curiosity

This appendix and those that follow are each paired with a particular chapter
of this thesis. In these appendices, we primarily include: (1) details important for
reproducibility, but that are uninteresting and break the flow of the main text and
(2) additional examples or annotations. In this appendix, we provide additional
details of the interface, dataset, and models in Chapter 6.

A.1 Components of Dialog Interfaces

This section provides short descriptions and screenshots of every component
of the user and assistant dialog interfaces.

A.1.1 User’s Interface
Figure 3.3 shows the interface that we use to sample the user’s prior knowledge

of entities related to the topic. To derive a diverse sample, we use Wikipedia page
views as a proxy for how well known the entity is. All experiments use the English
Wikipedia dump generated on July 23, 2019. We divide entity mentions into ten
buckets based on the frequency of page views, and round-robin sample fifteen entities
from those buckets. The interface is shown before the user starts chatting with the
assistant.

We elicit how “interesting” a user finds each of the assistant’s messages through
the like button in Figure 3.4. Only users can “like” a message; the assistant cannot
“like” user messages. Users are instructed to “like” messages if they are “interesting,
informative and/or entertaining” and “relevant to their topic and/or aspects.” They
are specifically instructed not to “like” messages that are devoid of factual content,
only express feelings, or only contain greetings or farewells.

Switching Aspect Users are randomly assigned two aspects for each dialog and
told to spend time discussing each. The guidelines instruct them to spend at least
two turns per topic, but we do not specify any further time requirements. When the
user changes aspects, we instruct them to click a button (Figure A.1) to indicate
when and which aspect they are switching to. Additionally, this event triggers a
reset in the context we use to rank the assistant’s facts.
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Figure A.1: The user is assigned two aspects about their topic. After they are sat-
isfied with what they have learned about the first aspect, they click a button and
switch to the next aspect. While the button click is not communicated to the assis-
tant (the user must send a corresponding message), it resets the fact contextualizer;
we observe that without this, too many facts were related to the previous aspect.

Figure A.2: A short topic description is always visible to the assistant. The goal is
to ensure the assistant always has a general understanding of the dialog topic.

A.1.2 Assistant Interface
By design, we intend for most workers to not be familiar in depth with most

of the geographic topics. Thus, the most important responsibility of the assistant
interface is to provide enough information—without overwhelming them—to be en-
gaging conversational partners. The first interface shown is a short description of
the topic from either Simple Wikipedia or the English Wikipedia. This component
helps the assistant reach a general understanding of the topic so that they can choose
better facts.

The most important component of the assistant interface is their list of avail-
able facts. These facts have high textual similarity with the most recent three turns
and are broken into three categories: facts related to entities the user knows about
(rooted facts), facts related to an aspect (aspect facts), and facts from anywhere
on the page (general facts). Feedback from pilot collections showed that six facts
was too few which caused a lack of relevant facts, but twelve facts overwhelmed
annotators. Thus, we use nine facts so that we can also balance equally across each
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type of fact. When composing their reply, the assistant can use any number of facts
as in Figure 3.5. To discourage verbatim copying, we disable the paste feature in
javascript. We also drop repeatedly unused facts.

A.2 Dialog Act Annotation

To annotate dialog acts, we create a separate annotation interface (Figure A.3).
The interface shows one dialog at a time, and the same annotator annotates all the
utterances. In addition to the utterances, the interface shows the topic, aspects, and
sender of each message. Lastly, we incorporate a “Report Dialog” feature to help
identify and remove inappropriate dialogs.

Figure A.3: To annotate dialog acts, we develop an interface that showed each
utterance on a separate line. Annotators assign zero or more dialog acts to each
utterance using grouped dropdowns.

A.3 Sample Dialogs

Tables A.1 and A.2 show Curiosity dialogs and highlight the dataset’s features.
Typos and grammatical errors made by annotators are left unaltered.
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A.4 Paraphrase Analysis and Samples

In Section 3.3.1.3, we describe the results of a manual analysis on two hundred
and fifty assistant paraphrases. Annotations were completed by the authors and
shown in Table 3.3. We break messages into four categories: paraphrases, copies,
errors, and unrelated. Paraphrases include messages that incorporate the selected
fact and possibly additional information. Copies include verbatim copying, cherry-
picked phrases, and trivial contextualizations like replacing an entity with a pronoun.

A.5 Like Prediction Comparison

Like prediction is the one task where charm was not the best model. To
better understand the differences between the charm and bert model, we randomly
sample thirty dialogs in the test set and find assistant messages where the model
predictions disagree. Of the 202 assistant messages in the thirty dialogs, the bert
like prediction is correct 174 times (86.1%) and charm 170 times (84.2%). The
models disagree on eight predictions (3.96%); bert is correct on six of these and
charm on the other two. Table A.4 shows the messages, predictions, and labels.
Although we might guess at why the predictions differ (e.g., perhaps something
in the Florida dialog confused bert), without further analysis we cannot establish
causality.

A.6 Model Training, Implementation, and Computation

Models were developed on a single machine with eighty Intel 2.0GHz cpus,
256gb ram, and eight Tesla V100 graphics cards. Each model was trained and
evaluated on a single graphics cards with hyper-parameter sweeps parallelized across
the eight cards. Our best model (charm), has 26, 970, 475 parameters, takes two
hours and eighteen minutes to train, and early stops on epoch fifteen.

Allennlp configuration files and software dependencies (including version) are
included with our code at github.com/facebookresearch/curiosity.

A.7 MS Marco Conversational Sample Queries

Conversational ms marco is a search dataset that partially inspired this work.
Assistant messages should prompt followup queries like in Table A.5.

149

https://github.com/facebookresearch/curiosity


Topic: Djibouti
Aspects: Economy, Politics

Known Entities: France, Africa

Dialog Acts Messages

U request topic Hi can you tell me about Djibouti?
A inform response The country of Djibouti is officially called the Republic of Djibouti

is located in the horn of Africa. It was created out of French So-
maliland. It is also recorded the country was colonized by France
in1800s and later gained its independence on June 27, 1977.

U request aspect Can you tell me about their Politics
A inform response After its independence, The country had two regiments com-

manded by the French officers. The country also maintains its
close ties with Somalia, Ethiopia, France and the United States.

U request aspect Any other information about the French and their impact of the
politics?

A inform response There are no direct information on its effect on the country’s pol-
itics but even though the country is already independent. The
13th Demi-brigade of the French Foreign Legion is still stationed
in this country. It is also the largest french military presence
abroad. commanded by a 3-star general.

U request aspect Heavy French infeleunce. what other interesting inofrmation on
politics do you have?

A inform response In recent years, the country has improved its training techniques,
military command, and information structure. They also became
more self-reliant in supplying their military and assist in peace-
keeping missions and provide military assistance to countries that
officially ask them for help.

U request aspect,
feedback positive

Wow Interesting, Can you now tell me about the economy they
have?

A offer aspect Sorry, I do not have that information. But I can tell you more
about Politics.

U offer accept Sure
A inform response Camp Lemonnier is rented by the United State as a Naval Expe-

ditionary Based for $63 Million a year. While Japan and France
each pays $30 million a year and China pays $20 Million a year.

U request other Lastly, any any fun facts?
A inform response I am not sure if this is a fun fact, but the country’s gross domestic

product expanded by more than 6%. From $341 Million to 1.5
Billion

U That’s a huge increase. thank you for all your help
A You are welcome

Table A.1: Example dialog #1 from Curiosity. (U: User, A: Assistant)
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Topic: British Columbia
Aspects: Government and politics, Culture

Known Entities: Canada, Seattle

Dialog Acts Messages

U request topic Hi! Can you help me learn some basic information about British
Columbia? I don’t know much except that it’s located in Canada.

A inform response Yes, British Columbia is the westernmost province of Canada and
is located between the Rocky Mountains and the Pacific Ocean.

U request aspect,
feedback positive

I didn’t know it was on the coast! What can you tell me about
government and politics there?

A inform response One interesting fact about the government is that the Green Part
plays a larger role in this province than it does in other provinces
of Canada.

U request followup,
feedback positive

Interesting. What can else you tell me about the Green Party?

A inform response The New Democratic Party and the Green Party caucuses to-
gether control 44 seats. Which seems like a lot but the British
Columbia Green Party only takes up 3 of those 44 seats.

U request aspect That’s a pretty small influence. Can you tell me some fun culture
facts about British Columbia?

A I am sorry I do not have any information on their culture right
now.

U request topic That’s okay. What other fun facts can you share?
A inform response Interestingly, Queen Victoria chose British Columbia to distin-

guish what was the British sector of the Columbia District from
the United States which became the Oregon Territory on August
8, 1848.

U request aspect So that’s why it has "British" specifically as part of it’s name!
Makes sense. Are there any sports or outdoor activities that are
popular in British Columbia?

A inform response Horseback riding is enjoyed by many British Columbians.
U Thanks for your help today. Now I know more than I did before.
A No problem, it was a pleasure.

Table A.2: Example dialog #2 from Curiosity. (U: User, A: Assistant). After
mentioning the Green Party, the user asks a specific followup question; we use these
interactions to estimate implicit preference.
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Label: paraphrase-correct
Message: I do not have the information available but I can tell you 10 million tones were
exported annually for, Cardiff dock in the years leading up to the First World War.
Fact: In the years leading up to the First World War , more than 10 million tonnes of coal
was exported annually from Cardiff Docks .

Label: copy
Message: Media and journalists in Namibia are represented by the Namibia chapter of the
Media Institute of ’southern Africa and the Editors Forum of Namibia.
Fact: Media and journalists in Namibia are represented by the Namibian chapter of the
Media Institute of Southern Africa and the Editors ’ Forum of Namibia .

Label: paraphrase-multiple
Message: The film industry has a rich history in Indonesian culture and the Indonesian
Film Festival has been held regularly since 1955.
Fact: Indonesia has held annual film festivals and awards , including the Indonesian Film
Festival ( Festival Film Indonesia ) that has been held intermittently since 1955 .

Label: context
Message: EU means European Union. GDP per capital ranges from 188% of EU average
in Bratislava to 54% in eastern Slovakia
Fact: GDP per capita ranges from 188 % of EU average in Bratislava to 54 % in Eastern
Slovakia .

Label: paraphrase-correct
Message: Sudan was considered the 17th growing economy in the world. Its faster devel-
opment of the country from oil profits.
Fact: Sudan , officially the Republic of the Sudan , is a country in Northeast Africa .

Label: paraphrase-correct
Message: There is a mountain range called the Annamite Range that runs along eastern
border to Vietnam and another range, named Luang Prabang Range, near the Thailand
border.
Fact: The Mekong River forms a large part of the western boundary with Thailand , where
the mountains of the Annamite Range form most of the eastern border with Vietnam and
the Luang Prabang Range the northwestern border with the Thai highlands .

Label: copy
Message: In 1603, the kingdoms of England, Scotland and Ireland were united in a personal
union when James VI, king of Scots, inherited the crowns of England and Ireland and moved
his court from Edinburgh to London; each country nevertheless remained a separate political
entity and retained its separate political, legal and religious institutions. Would you like to
know anything else?
Fact: In 1603 , the kingdoms of England , Scotland and Ireland were united in a personal
union when James VI , King of Scots , inherited the crowns of England and Ireland and
moved his court from Edinburgh to London ; each country nevertheless remained a separate
political entity and retained its separate political , legal , and religious institutions .

Label: copy
Message: The A31 connects to the A35 at Bere Regis , and passes east through Wimborne
and Ferndown to Hampshire where it later becomes the M27
Fact: The A31 connects to the A35 at Bere Regis , and passes east through Wimborne and
Ferndown to Hampshire , where it later becomes the M27 .

Label: context
Message: I’m not sure of that. One fact I do have is that by 1857, Chicago was Illinois’
largest city.
Fact: By 1857 , Chicago was Illinois ’s largest city .

Label: paraphrase-correct
Message: On March 2, 2008, Dmitry Medvedev was elected President of Russia and
Vladimir Putin became Prime Minister.
Fact: On 2 March 2008 , Dmitry Medvedev was elected President of Russia while Putin
became Prime Minister .

Table A.3: A random sample of ten manually labeled paraphrases from the assistant.
The top row indicates the label we (the authors) annotated, the middle row the
message, and the bottom row the original fact from Wikipedia. The original fact is
shown as displayed to crowd-workers including punctuation tokenization.
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Liked Correct Model Message

No bert You are welcome!

Yes bert I’m sorry I don’t have anymore information about the etymol-
ogy of Tunisia, but what I can tell you is that Tunisia Sports
City is a whole sports city being constructed in Tunis

Yes bert Yes Buddhism is a dominant influence in Lao culture. It has
been great helping you.

Yes charm Florida is a state in the southeast United States. What would
you like to know?

Yes bert They have an average daily temperature of 70.7, it’s the
warmest state in the U. S.

Yes charm Yes, I can. Florida is nicknamed the “Sunshine State”, but
severe weather is a common occurrence.

Yes bert Hello, Indonesia is part of the Malay Islands and is in South-
east Asia. Would you like to know more about the history?

Yes bert I do not have etymologic information, would you like to know
more about the economy? I can tell you thank Indonesia
develops military and commuter aircraft.

Table A.4: To compare like prediction between models, we randomly sample thirty
dialogs and obtain predictions from charm and bert. The table only shows mes-
sages where the model predictions disagree and indicates which model was correct.
Dialogs are delineated by horizontal lines. Unfortunately, from only these examples
we cannot determine why the charm model errors in most of these predictions.
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Query

What is a physician’s assistant?
What are the educational requirements required to become a physician’s assistant?
What does the education to become a physician’s assistant cost?
What’s the average starting salary of a physician’s assistant in the UK?
What’s the average starting salary of a physician’s assistant in the US?
What school subjects are needed to become a registered nurse?
What is the physician’s assistant average salary vs a registered nurse?
What the difference between a physician’s assistant and a nurse practitioner?
Do nurse practitioners or physician’s assistant’s make more?
Is a physician’s assistant above a nurse practitioner?
What is the fastest way to become a nurse practioner?
How much longer does it take to become a doctor after being a nurse practitioner?
What are the main breeds of goat?
Tell me about boer goats.
What goat breed is good for meat?
Are angora goats good for meat?
Are boer goats good for meat?
What are pygmy goats used for?
What goat breed is the best for fiber production?
How long do Angora goats live?
Can you milk Angora goats?
How many Angora goats can you have per acre?
Are Angora goats profitable?

Table A.5: An exemplar query chain from the conversational variant of ms marco.
An ideal assistant should answer these questions and inspire these types of followup
questions.
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Appendix B: Leaderboard

This appendix supports Chapter 4 by showing additional squad examples,
feature descriptions, reproducibility details, minor results related to the work’s main
experiments, and discussions of multidimensional clustering and statistical testing.

B.1 SQuAD Item Examples

On our project page at irt.pedro.ai, we include annotations from Figure 4.10
in human and machine-readable formats and provide an interactive web interface to
inspect the parameters of the irt-base, irt-disc, and irt-feas models. Figure B.4
shows the feasibility distribution corresponding to Figure 4.1.

B.2 Logistic Regression Features

The linear model (§4.4.2) includes features based on item ids, subject ids,
textual features of the question, context, and answer, and topic model features.
Table B.1 lists the feature names from Figure 4.4 with descriptions of each. When
irt features or the statistics features are used, they include interaction terms with
themselves.

B.3 IRT Model Type Correlation

Although each irt model differs in expressiveness, they should—in general—
produce similar results. This is confirmed by computing the Kendall’s rank corre-
lation between the subject abilities and item difficulties (Table B.2).

B.4 Ranking Stability Experiments

Here we provide further details for the ranking stability experiments (§4.4.2.3).
First, we filter from the 161 subjects that have development set scores to the 115
that also have test set scores.1 In our simulation, we run 10 trials for every sample
size; sample size begin at 100 and advances by 100. In addition to these, we also
run for sample sizes 25, 50, and 75. Since each sample can be no larger than half
the dataset, we stop at half the dataset.

1The squad organizers curate the test set subjects to avoid overfit, garbage, or duplicate
submissions.
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Discriminability: -9.63 Difficulty: -0.479 Feasibility: 0.614 Mean Exact
Match: 0.472
Wikipedia Page: Economic inequality Question ID:
572a1c943f37b319004786e3
Question: Why did the demand for rentals decrease?
Official Answer: demand for higher quality housing
Context: A number of researchers (David Rodda, Jacob Vigdor, and Janna
Matlack), argue that a shortage of affordable housing – at least in the US – is
caused in part by income inequality. David Rodda noted that from 1984 and
1991, the number of quality rental units decreased as the demand for higher
quality housing increased (Rhoda 1994:148). Through gentrification of older
neighbourhoods, for example, in East New York, rental prices increased rapidly
as landlords found new residents willing to pay higher market rate for housing
and left lower income families without rental units. The ad valorem property
tax policy combined with rising prices made it difficult or impossible for low
income residents to keep pace.

Figure B.1: The example from squad with the lowest discriminability. Surprisingly,
it had a negative discriminability, implying that the less skilled a subject is, the more
likely their response is to be correct.

B.4.1 Development and Test Set Correlations
Table B.3 uses a irt-disc model since we noticed that in comparison irt-

feas overfit the data, yielding worse results. The correlations with the full data are
all strong, but not the same. Taking all these results, we conclude that—at least on
squad—irt rankings are modestly more reliable than classical rankings.

B.5 The IRT Statistical Test

The irt test differs in two substantial ways from other tests: (1) it does
not assume that items are equally informative and (2) it does assume that the
informativeness of items is a function of the subject’s skill θj. In the literature,
this is closely connected to reliability (Tague-Sutcliffe, 1992) and each item provides
information about the location of θj; as we accumulate more evidence for the location
of θj the error of estimation decreases. It is a well known result in irt that standard
error of estimate (see) σ(θ̂|θ) varies with respect to the agent location parameter
θ (De Ayala, 2013, p. 30) and is connected to the Fisher information

Ii(θ) =
(p′i)

2

pi(1− pi)
(B.1)

of each item. For a 2PL model, information

Ii(θ) = γ2pi(1− pi) (B.2)
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Discriminability: 2.1 Difficulty: 2.38 Feasibility: 0.995 Mean Exact
Match: 0.00621 Mean F1: 0.546
Wikipedia Page: European Union Law Question ID:
57268f2bf1498d1400e8e3c4
Question: What reform was attempted following the Nice Treaty?
Official Answer: an attempt to reform the constitutional law of the European
Union and make it more transparent
Context: Following the Nice Treaty, there was an attempt to reform the con-
stitutional law of the European Union and make it more transparent; this would
have also produced a single constitutional document. However, as a result of
the referendum in France and the referendum in the Netherlands, the 2004
Treaty establishing a Constitution for Europe never came into force. Instead,
the Lisbon Treaty was enacted. Its substance was very similar to the proposed
constitutional treaty, but it was formally an amending treaty, and – though it
significantly altered the existing treaties – it did not completely replace them.

Figure B.2: This example shows that the answer span is likely too large, causing
models to fail in both squad’s exact match and F1 metrics.

is maximized when pi = (1 − pi). Since Fisher information is additive, the infor-
mation of the evaluation set is maximal when items have a 50% chance of being
responded to correctly. As derived by De Ayala (2013, p. 102), the standard error
of estimation

SEE(θ) =

√
1∑
i Ii(θ)

. (B.3)

is computed by accumulating the information gained from each item. Given two
subjects X and Y , one can use the probability distribution of score differences

N(θY − θX , SEE(θX)2 + SEE(θY )2) (B.4)

to compute the probability that the difference in skill is greater than two standard
errors which corresponds to an α ≤ .05 significance level.

B.6 Multidimensional IRT Clustering

While we achieve strong held-out accuracy with the 10 dimensional irt (irt-
vec), we had limited success in interpreting parameters. We use tsne2 plots over-
layed with features like item accuracy, the question’s Wikipedia page, if the question
was answerable, length of questions, and topic model weights. Of these, item accu-
racy and answerability showed the most obvious patterns (Figure B.5).

2We use openTSNE (Poličar et al., 2019) with default parameters.
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Discriminability: 8.01 Difficulty: -1.41 Feasibility: 0.939 Mean Exact
Match: 0.64 Mean F1: 0.667
Wikipedia Page: Normas Question ID: 56de10b44396321400ee2595
Question: Who did the Normans team up with in Anatolia?
Official Answer: Turkish forces
Context: Some Normans joined Turkish forces to aid in the destruction of the
Armenians vassal-states of Sassoun and Taron in far eastern Anatolia. Later,
many took up service with the Armenian state further south in Cilicia and the
Taurus Mountains. A Norman named Oursel led a force of "Franks" into the
upper Euphrates valley in northern Syria.. . .

Figure B.3: This highly discriminative question succeeds because there are many
plausible answers. For example, although only “Turkish forces” is correct, some
models answer “the Armenian state.”

Feature Description

All All the features
irt irt values for difficulty, discriminability, feasibility, and ability
Item id The item’s id
Subject id The subject’s id
Question Question words
Context Context words
Stats Lengths of question and context; answerability, answer position

and length; difficulty from Sugawara et al. (2017)
Subject & Item id Item and Subject id
Topics 1K Topic weights of question words
Title Wikipage page title words
Baseline No features, majority class baseline

Table B.1: The linear model integrates a variety of features to determine which are
most predictive of a subject responding correctly to an item.

B.7 Reproducibility Checklist

Here we provide reproducibility details to complement our source code and
data release at https://irt.pedro.ai.

B.7.1 Software and Parameters
All reported irt models are implemented in PyTorch (Paszke et al., 2019) and

Pyro (Bingham et al., 2018). Linear models are trained with Vowpal Wabbit (Agar-
wal et al., 2014). The topic model that generated features for the linear model uses
Mallet (McCallum, 2002).

The irt models have parameters proportional to the number of subjects m
and the number of items n. The irt-base has one parameter per subject and one
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Figure B.4: The feasibility parameter λ of our irt model represents the probability
that an example is unsolvable. For example, annotation error could lead to an
example always being scored incorrectly—regardless of how good the model is. In
squad 2.0, λ < .434 in the 5% percentile, λ < .698 for the 7.5%, and λ < .931 in
the 10% percentile.

parameter per item. The irt-disc has one parameter per subject and two parameters
per item. The irt-feas has one parameter per subject and three parameters per item.
The irt-vec has ten parameters per subject and thirty parameters per item.

B.7.2 Hyperparameters
We did not invest significant effort on hyper-parameter tuning the irt models

and instead used the defaults in the py-irt software3 provided by Lalor et al. (2019).
The irt-base, irt-disc, and irt-feas models were trained for 1000 epochs with no
early stopping conditions and a learning rate of 0.1 with adam (Kingma and Ba,
2015). The irt-vec model was trained for 2500 epochs and used 10 dimensions.

In the linear model, we used a Hyperopt-based (Bergstra et al., 2013) tool
provided by Vowpal Wabbit4 for hyper parameter search. For each lm, the tool
spent 20 iterations optimizing the learning rate, L2 regularization, and number of
bits against the logistic loss function. The learning rate was searched from .001 to
10 with loguniform sampling, L2 regularization from 1e−8 to 1, and bits from 20 to

3https://github.com/jplalor/py-irt
4https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/utl/vw-hyperopt.py
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Ability irt-feas irt-disc irt-base

irt-feas 1.00 0.947 0.895
irt-disc 0.947 1.00 0.907
irt-base 0.895 0.907 1.00

Table B.2: Table entries are Kendall’s τ rank correlation of irt subject ability
between rows and columns. Generally, the models agree on the ranking with the
irt-feas and irt-disc having the strongest correlation.

EMdev EMtest Abilitydev Abilitytest

EMdev 1.00 0.953 0.954 0.931
EMtest 0.953 1.00 0.944 0.947
Abilitydev 0.954 0.944 1.00 0.950
Abilitytest 0.931 0.947 0.950 1.00

Table B.3: Entries are Kendall’s rank correlation between rows and columns. Scores
are squad Exact Match (EM) and irt-disc ability.

23 as categorical variables.
The topic model that generated features for the linear model used mallet,

and we followed the recommendations of the software5 to set hyper parameters.
Specifically, we used an optimization interval of 10, removed stop words, trained for
1000 iterations, and used a document topic threshold of 0.05. Each document was
comprised of the Wikipedia page title and the question text.

B.7.3 Computational Resources
The majority of experiments were conducted on a single workstation with an

Intel i7-7700K cpu, 47gb of ram, and an Nvidia 1080Ti. The average runtime for
the irt-feas model on cpu is 113 seconds with a standard deviation of 2.31 over
5 trials. The average runtime of the irt-vec model on gpu is 110 seconds with a
standard deviation of 0.5 over 5 trials.

Since each ranking stability required (§4.4.3.1) re-training an irt-feas model
on each subset, we parallelized this experiment on a cpu cluster where each trial
received two cpu cores and 16gb of ram. In total, this included 520 trials which
corresponds to twice that many trained irt models since one model is trained on
each subset of the data.

5http://mallet.cs.umass.edu/topics.php
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accuracy) and answerability with respect to multidimensional difficulty and discrim-
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Appendix C: Quizbowl

This appendix provides additional details on preprocessing and model features
in Chapter 5.

C.1 Preprocessing

This section provides a detailed description of preprocessing on the question
dataset.

C.1.1 Aligning and De-duplicating Questions
Since we obtain machine-readable versions of questions from two online sources

it is necessary to ensure that we do not include the same question twice. We use the
metadata associated with each question such as tournament and year. As part of
our preprocessing we manually align the values of these fields.1 We use these fields
to ensure that questions for each tournament and year are included only once.

C.1.2 Textual Preprocessing
Models should define their own textual preprocessing so we only preprocess the

text to remove qb specific artifacts. Most of these artifacts are instructions to the
moderator or organizer such as “MODERATOR NOTE:”, “Description Required”,
“15 pts:”, or a reference to the category of the question; we use regular expression
rules to remove these. Since we report results on accuracy after the first sentence in
questions we also provide a set of canonical sentence tokenization indices computed
using spacy.2

C.1.3 Fold Assignment
We divide qanta dataset questions into training, development, and test folds

based on the competitiveness and year of the source tournament. Since champi-
onship tournaments typically have the highest quality questions we use questions
from championship tournaments 2015 and onward as development and test sets. All
other questions are used as the training set.

1We also align category and sub-category fields.
2https://spacy.io
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Table 5.3 shows the divisions of each fold; each train, dev, or test fold is as-
signed to be used for either determining what to answer (guessing) or when to answer
(buzzing). Questions in “guess” folds are used for developing question answering sys-
tems as in Section 5.5. Questions in the “buzz” folds are used for developing agents
that decide when to answer as in Section 5.6.

When we assign folds to qb questions we aim to create useful splits for guessing
and buzzing while preserving the integrity of the development and test sets. Namely,
when we create test and development folds we make the division into folds not
depend on whether or not gameplay data exists. If it were the case that by making
this unconditional assignment the number of questions with gameplay data is too
small this would be a problem. We do not find this to be a problem however.

For test set questions this is easily accomplished by using an implicit quality
filter and a temporal split; use only questions from national championship tourna-
ments, questions from 2016 are used in the buzzing test set, and questions from 2017
and 2018 are used for the guessing test set. Following this we pair the test fold for
buzzing with gameplay data, and are fortunate that the number of questions is not
small.

To create the development sets we use questions from 2015 which are randomly
split with equal probability into guessing and buzzing specific folds. Similarly to
the test set we associate gameplay data after this assignment occurs to preserve its
integrity against any bias that conditioning on having gameplay data would have.

For the training data we make a weaker attempt to eliminate bias in favor of
ensuring that the training folds for guessing and buzzing are large enough. We first
divide the training questions with an 80/20 split. Questions in the eighty percent
split are assigned to the guessing fold. Each remaining question is assigned to the
buzzing fold if it has gameplay data, otherwise it is assigned to the guessing fold.
Figure 5.3 shows the result of this folding procedure.

C.1.4 Matching QB Answers to Wikipedia Pages
The automatic rule based part of this process is composed of two phases: an

expansion phase in that produces variants of the answer text, and a match phase
that determines when one of these variants is a match to a Wikipedia page. The
rules in the expansion phase can be as simple as exact text match to expanding “The
{Master of Flémalle} or Robert {Campin}” to “{Master of Flémalle}” and “Robert
{Campin}”. In this case, multiple matches result in “Robert Campin” being the
answer page: after removing braces “The Master of Flémalle” Wikipedia redirects
to “Robert Campin” and “Robert Campin” is also an exact match. These rules
are incredibly effective at finding answers buried in qb specific notation such as
the random sample in Table C.1. When matches disagree we use the match that
modified the original answer text the least.

There are inevitably cases where the automatic system fails to find a match, or
finds the wrong match. Qualitatively these are often caused by disambiguation errors
such as failing to differentiate between “Guernica” the city versus the painting by
Picasso, small differences in answer strings, and when there is no suitable Wikipedia
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Original qb Answer Matched Wikipedia Page
Nora Helmer A_Doll’s_House
{Gauss}’s law for the electric field No Mapping Found
Thomas Hutchinson Thomas_Hutchinson_(governor)
linearity Linearity
{caldera}s Caldera
William Holman {Hunt} William_Holman_Hunt
{plasma}s Plasma_(physics)
{Second Vatican Council} [or {Vatican
II}]

Second_Vatican_Council

{Jainism} Jainism
{Electronegativity} Electronegativity
Hubert Selby, Jr. Hubert_Selby_Jr.
(The) Entry of Christ into Brussels (ac-
cept equivalents due to translation)

Christ’s_Entry_Into_Brussels_in_1889

Depictions of Speech [accept equiva-
lents]

No Mapping Found

stress Stress_(mechanics)

Table C.1: A random sample of qb answer strings and their matched Wikipedia
pages. Answer mappings are easy to obtain accurately since most failures in exact
matching are due to qb specific syntax that can be accounted for by rule based
matching. Combined with manual annotation to find common non-exact matches,
this process succeeds on 119,093 of 132,849.

page. To correct or verify these errors we (the authors), and skilled members of the
QB community (such as tournament organizers and participants from our exhibition
matches) manually annotated a significant fraction of the training data, and all the
test data.

Rather than doing manual annotation of each question, we begin by defining
mappings of answer strings to Wikipedia pages so that when that string occurs
multiple times it does not require manual annotation for every occurrence of that
answer in questions. However, this has the serious drawback that if the answer
string is ambiguous then it may result in mislabeled answers. To avoid this problem
we design a manual process whereby annotators update three sets of answer-to-
Wikipedia mappings: unambiguous, ambiguous, and direct mappings.

Unambiguous annotations contain a list of answer strings that when seen map
to a specific Wikipedia page. As the name implies, we only insert annotations
here when the answer unambiguously identifies the corresponding Wikipedia page.
Ambiguous annotations similarly contain a list of answer strings, but are paired with
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a list of disambiguation words. If the answer string is seen, at least one word is in
the question text, and there are no other ambiguous matches, then it is mapped. For
example, if the answer string is “amazon” and the question contains the word “river”
then we assume “Amazon river” is the correct page while if the question mentions
“bezos” then the correct page is “Amazon (company)”. Finally, direct mappings
match the answer for specific questions.

The last major design decision in this process addresses how we prevent infor-
mation from the test data to leak into the training data. The root of the data leak
issue is that the distribution of answers between training and test data often results
in only approximately 80% of test set answers occurring in the training data. We ob-
served this phenomena empirically in both our data and the distribution of answers
from our numerous exhibition events. If all answer strings are naively combined,
then mapped, this implies that the training data will be biased towards its answers
containing an over abundance of test set answers. A major difference between this
and prior versions of the qanta dataset is finding and fixing this issue.

We correct this error by separating the answer string pool for training and
test questions. Although this results in more annotation work, it avoids information
leakage. While reviewing our annotation procedure we noticed another source of
bias. Recall that we do not exhaustively annotate the training data. In our initial
annotation we did not fully annotate the test data, and by doing so introduced a
bias towards easier-to-annotate questions in the test set. To eliminate this bias—
and make it as similar to playing a qb tournament as possible—we annotated every
question in the test set.3

C.1.5 Buzzer features
The guesser updates its list of guesses whenever a new word of the qb question

is revealed. At each time step, the buzzer extracts features from both the current
and all past guesses and predict whether the current guess is correct. It is important
to include past guesses as the dynamics of the guesser’s confidence contains strong
signal about its correctness: the guesser usually starts with some random guess when
little information is provided, then fluctuates between several plausible answers—
just as humans do, and finally stablizes to a single answer, at which point the buzzer
should buzz. Below is the full list of buzzer features we use in the experiments:

• Probabilities of the current top 3 guesses

• Change of top 3 probabilites from the previous step

• Gaps between probabilities of the top 3 guesses

• Binary indicator of whether each of the top 5 guesses increased its ranking
from previous step

3Specifically, we either pair each test set answer strings with a Wikipedia title or mark it as
not having a corresponding Wikipedia title.
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Category N Percent

Pop Culture 55 40%
History 26 19%
Science 20 15%
Other 13 9.6%
Social Science 7 5.1%
Geography 6 4.4%
Religion 2 1.5%
Literature 5 3.7%
Philosophy 1 0.74%
Fine Arts 1 0.74%

Total w/ Category 136 100%

No Category 14

Total 150

Table C.2: A breakdown of NaturalQuestion example topics using qb categories.
Most questions are about pop culture and the distribution includes many fewer
questions about Literature and Fine Arts.

• Mean and variance of probabilities of the current top 3 guesses

• Mean and variance of probabilities of the previous top 3 guesses

C.2 Natural Questions Categories

Section 5.3.2 analyzes the topical diversity of qb questions and makes com-
parisons to NaturalQuestions. To compare to NaturalQuestions—which does not
have category labels—we annotated a random subset of 150 questions using qb’s
categories (Table C.2).
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Appendix D: Centaur Authorship of Quizbowl Questions

This appendix contains an analysis of automatically created adversarial exam-
ples and details of the Studio ousia model.

D.1 Failure of Syntactically Controlled Paraphrase Networks

Sentence Success/Failure Phenomena
its types include “frictional”, “cyclical”, and “structural” Missing Information 7its types include “frictional”, and structural
german author of the sorrows of young werther and a
two-part faust Lost Named Entity 7

german author of the sorrows of mr. werther
name this elegy on the death of john keats composed
by percy shelley Incorrect Clue 7

name was this elegy on the death of percy shelley
identify this play about willy loman written by arthur
miller Unsuited Syntax Template 7

so you can identify this work of mr. miller
he employed marco polo and his father as ambassadors Verb Synonym Xhe hired marco polo and his father as ambassadors

Table D.1: Failure and success cases for scpn. The model fails to create a valid
paraphrase of the sentence for 97% of questions.

We apply the Syntactically Controlled Paraphrase Network (Iyyer et al., 2018,
SCPN) to qb questions. The model operates on the sentence level and cannot
paraphrase paragraphs. We thus feed in each sentence independently, ignoring pos-
sible breaks in coreference. The model does not correctly paraphrase most of the
complex sentences present in qb questions. The paraphrases were rife with issues:
ungrammatical, repetitive, or missing information.

To simplify the setting, we focus on paraphrasing the shortest sentence from
each question (often the final clue). The model still fails in this case. We ana-
lyze a random sample of 200 paraphrases: only six maintained all of the original
information.

Table D.1 shows common failure cases. One recurring issue is an inability to
maintain the correct named entities after paraphrasing. In qb, maintaining entity
information is vital for ensuring question validity. We were surprised by this failure
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because SCPN incorporates a copy mechanism.

D.2 Studio Ousia qb Model

The Studio Ousia system works by aggregating scores from both a neural text
classification model and an IR system. Additionally, it scores answers based on their
match with the correct entity type (e.g., religious leader, government agency, etc.)
predicted by a neural entity type classifier. The Studio Ousia system also uses data
beyond qb questions and the text of Wikipedia pages, integrating entities from a
knowledge graph and customized word vectors (Yamada et al., 2018b).
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