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ABSTRACT
A common theme across different factoid question answering
methods is to by some means compute the semantic similarity
between questions and potential answers and then select the
answer with the highest similarity to the question text. A
common way to compute this score is to embed the questions
and answers in either traditional or neural bag of words
vector space, and then rank all possible answers with a
machine learned model. In this work we introduce network
based methods for using the Wikipedia hyperlink graph to
compute an initial list of candidate answers, network-based
ranking metrics for ordering these candidates, and text based
word embedding methods that are also shown to be effective
for ranking using only the page title and question text.

CCS Concepts
•Information systems → Question answering; Lan-
guage models; •Computing methodologies → Natural
language processing; Supervised learning by classification;
Reinforcement learning; Neural networks;

Keywords
Factoid question answering; network science

1. INTRODUCTION
Question answering (QA) is a subfield of computer science

concerned with creating systems that can answer questions
posed by humans in natural language. Factoid question
answering (FQA) focuses on a subset of QA where questions
have distinct fact-like answers. For example, “Who invented
general relativity?” which is answered by “Albert Einstein”
is an example of (FQA). FQA systems have traditionally
incorporated methods from information retrieval, information
extraction, and natural language processing.

This work focuses on FQA over paragraphs of text which
is the primary task in two trivia games called Jeopardy! and
Quiz Bowl. In these games a long paragraph of text is read
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about an entity and players attempt to guess the answer
before the other player. Figure 1 shows a sample question
about Albert Einstein from Quiz Bowl.

With Leo Szilard, he invented a doubly-eponymous refrigera-
tor with no moving parts. He did not take interaction with
neighbors into account when formulating his theory of heat
capacity, so Debye adjusted the theory for low temperatures.
His summation convention automatically sums repeated in-
dices in tensor products. His name is attached to the A and
B coefficients for spontaneous and stimulated emission, the
subject of one of his multiple groundbreaking 1905 papers.
He further developed the model of statistics sent to him by
Bose to describe particles with integer spin. For 10 points,
who is this German physicist best known for formulating the
special and general theories of relativity?

Figure 1: Quiz Bowl question about Albert Einstein

One set of techniques in FQA can be seen as embedding the
input question in some higher dimensional where questions
with the same or similar answers are nearby in the space. At
test time, an embedding for the input question is obtained
and the returned answer corresponds to some function of
the answers of nearby questions (for example the answer
of the nearest question). One naive NLP approach would
be to embed the text in a higher dimensional space using
n-gram bag of words and TF-IDF. Another technique is to
use neural bag of words in which dense vector representations
for each word in the paragraph are obtained with a skip-gram
model such as word2vec, and then averaged together. These
methods often also use some form of machine learning and
increasingly deep learning to better embed questions with the
same answer near each other. All these methods formalize
the intuition that the semantic content of questions should
be near the semantic meanings of answers.

In Section 3 we describe a novel networked based method
for FQA that is loosely inspired by the Wiki Game[3]. In
the game players first choose starting and ending pages on
Wikipedia, then attempt to find the shortest hyperlink path
from the start to the end. The intuition that related pages
should be closer on the link graph is used to devise a method
for approximating semantic similarity between questions and
answers. In this section we show that using network structure
alone, specifically excluding textual features, can generate an
effective list of candidate answers, and that certain network
features are predictive of the true answer.

Section 4 describes and compares text based methods
which use only list of candidate answers as input from the
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network. We specifically exclude the network features derived
in Section 3 to observe the effectiveness of text by itself. We
also provide additional motivation for using a network based
list of candidate answers as opposed to a more traditional
multi-class classification scheme.

We then move on in Section 5 to experiments which com-
bine the methods from Section 3 and 4. These results are
then loosely compared to the results from a state-of-the-art
question answering system for Quiz Bowl called QANTA[7].
We then conclude in Section 6 by detailing ideas for future
work.

2. QUIZ BOWL AND WIKIPEDIA DATA
The Wikipedia graph is well suited as the basis for creat-

ing a network method since it contains references to a vast
number of entities, and encodes rich semantic information in
its link graph. However, its also possible that the semantic
information is difficult to extract due to the noisy nature of
the link graph. Fortunately, prior work has established that
crowd-sourced play of the Wikipedia Game can be used to
smooth over this noise and compute a semantic similarity
distances between pairs of entities[12] that outperforms latent
semantic analysis. We chose not to use an explicit semantic
network such as WordNet, because although it is much less
noisy it does not include less common entities such as Peter
Debye in figure 1[9]. Although FQA from semantic networks
is not a new idea, we are not aware of any other work which
uses the Wikipedia link graph as a semantic network for FQA.
We specifically focus on using the Wikipedia link graph for
generating answers to Quiz Bowl, a popular academic trivia
game[4].

In this section we first discuss the Quiz Bowl task, the sub-
set of questions used, identify important evaluation metrics,
and specify how the link graph was built.

2.1 Quiz Bowl Task and Dataset
As briefly described in Section 1 the essential task is to

predict the answer to a question given a string of text as
soon as possible. In all our experiments we only consider
guessing at the end of the question when all the text has
been revealed. To evaluate our methods we use a subset of
an openly available Quiz Bowl question dataset and compare
against the DAN method[6][7]. The dataset contains a total
of 36,448 questions with non-empty answers that have a set
of 11,895 distinct answers. As will be discussed in Section 4,
deep learning methods based on multi-class classification over
a closed answer set are only capable of answering roughly half
of those questions with a set of approximately 2,000 distinct
answers. This limitation primarily arises from the need for a
certain minimum number of training examples per answer
class. To prove that our method is effective over precisely the
set of questions that the DAN system is implicitly incapable
of answering, our experiments use a set of 5,624 questions
whose answers appear exactly once between all folds of the
data.

Lastly, all our experimental results focus on maximizing
answer recall Ra(q, n). Answer recall Ra(q, n) = 1 when
the answer to question q is contained within the first n
guesses and zero otherwise. This is emphasized since while
this method and the deep learning methods are responsible
for generating guesses in QANTA, other components of the
system are responsible for reranking candidate guesses based
on additional feature extraction techniques such as a language

model. It is therefore more important to maximize Ra(q, n)
within approximately the top 100 guesses than to maximize
precision.

2.2 Building the Wikipedia Link Graph
We now formalize the notion of the Wikipedia link graph,

the data collection method, and describe the filtering methods
used to avoid nonsensical pages from entering the graph. Our
experiments use a pre-extracted adjacency list formatted
link graph which includes 5,716,808 pages and 130,160,392
links[2]1. Let G = (V,E) be a directed graph with vertexes
V and edges E. All pages on the Wikipedia link graph
correspond to a vertex in V . The existence of a hyperlink
from page a to page b on Wikipedia denotes that the edge
eab ∈ E.

In all experiments we filter Wikipedia pages by the content
of their title. Specifically, page titles must satisfy the regular
expression in ^[a-zA-Z_’]+\$, and not be a stop word2.
This filtering reduces the graph size to 3,667,749 vertexes
and 54,215,111 edges.

3. WIKIPEDIA NETWORK METHOD
With the Quiz Bowl dataset and Wikipedia graph now de-

scribed in detail we move on to describing the network part of
our method. In this section we discuss how to map questions
to Wikipedia, identify candidate answers from the mapping,
then use network features to rank the candidates. We also
discuss ways to make the core shortest path algorithms speed
and memory efficient.

3.1 Mapping Questions to Wikipedia
Questions are matched to Wikipedia using exact n-gram

matching, and excluding stop words. For example, exact 1-
gram matching to Wikipedia pages would result in the yellow
highlighted text of the following passage being matched:
“With Leo Szilard, he invented a doubly-eponymous refriger-
ator with no moving parts”. These vertexes are considered
to be the seed vertex set S for this question. In the network
feature experiments exact 1-gram matching is used, and the
text experiments in Section 4 expands to 5-grams. As is
readily obvious, there is a great deal of improvement that
could be done at this step, some of which is discussed in
Section 4 and the rest in Section 6.

3.2 Identifying Candidate Answers
Once a seed set S of vertexes is chosen then a set of

candidate answers is selected. The simplest approach is to
consider all nodes within d distance away from any vertex
in S to be a member of a candidate answer set C. Since the
Wikipedia graph exhibits small world behavior and every
page is connected to every other page by 4.6 links on average
it turns out to be sufficient and computationally desirable to
limit 1 ≤ d ≤ 2. Intuitively, the higher d becomes the less
semantically related the nodes in C are to any of the nodes
in S so the cutoff is reasonable from that perspective as well.
For the particular single sentence examined previously, a

1This page is now only available by the Wayback Machine,
and uses a copy of Wikipedia circa 2009. We plan on collect-
ing an updated version of Wikipedia from the raw dumps
soon.
2This excludes too much and we plan on allowing numbers
and parenthesis in future experiments. Stop words are from
nltk.corpus.stopwords
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sample of the 150 generated candidates is shown in figure
2 with the source of each candidate identified. When the
full paragraph text is used each question has approximately
3,000 candidate answers in C and 50 seeds in S.

Figure 2: Seed vertexes for the Leo sentence on top
with a sample of the 150 generated candidates below.
Note how 2-grams would capture “Leo Szilard” who
is directly connected to Einstein and that with basic
NLP “parts“ and ”part” could be merged.

3.3 Network Features
Once a candidate set C is selected the next step is to order

the set from most to least likely to be the answer. In this
section we focus on describing the network features which
were predictive of the answer.

3.3.1 Shortest Paths
As mentioned earlier, various NLP approaches are essen-

tially asking the question of how close each of the candidate
answers are to the question text and picking the nearest
one. The natural network analog of this idea is to compare
the shortest path distances between each candidate and the
seed vertexes. Since every sentence and fact in the question
relates to a single distinct answer, it is sensible to believe
that the candidate nearest in path distance is more likely to
be the answer.

Since Wikipedia is a directed graph the distance from the
seed to candidates and vice versa is not necessarily the same.
Rather than lose potential information, shortest paths are
computed both ways.

This then leaves the question of how these list of distances
should be converted to numerical scores. To decide that,
first note that if there is no path between two nodes their
distance they could be treating as being infinitely far apart.
The natural solution to this problem is to sum the inverse of
the distances which produces scores where higher is better.
This is a well known network science metric called harmonic
centrality. This is done for both seed to candidate and
candidate to seed shortest paths on the graph.

The predictiveness of this is covered in detail in Section 5,
but to statistically show why it works we can look at harmonic
distance distributions. On the set of 108 questions used in
experiments we examined the distribution of distances from
the candidates to the seeds. First we establish using figure 3
that these distances follow a normal distribution, and that
distances are not heavily skewed. The overall mean distance
from any candidate to a seed was 14.4 with a standard
deviation of 3.35. For all candidates that turned out to be
answers the mean distance increases to 17.34. Since this is in
the area of one standard deviation above the distribution it

indicates that harmonic distance could be a good predictor
of a candidate being the answer.
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Figure 3: Histogram of harmonic shortest path dis-
tance from candidates to seed vertexes. Higher is
more indicative of being the answer.

We also tried other ways of aggregating the distance scores
such as min, max, and mean distances, but have not seen as
much success in the short amount of time used in exploring
these.

3.3.2 Degree
Shortest paths do an effective job of picking out candidates,

but there is much in the network structure of Wikipedia that
can bias results. For example, consider that the distance to
highly central nodes like the United States is likely to be
very small. Just by being a high degree node the distances
to it and from it will be smaller. This is similar to the notion
in NLP that some words have a stronger prior likelihood,
but that the posterior can be de-biased.

In our network method we use the in and out degrees of
nodes to act as this de-biasing mechanism. To handle very
high degree nodes we use the logarithm of the in and out
degrees as the features for the network classifier.

3.4 Network Feature Classifier
At the start of this project we began with using only the

shortest path score which made needing a machine learned
model unnecessary. After looking at early errors though it
became obvious we wanted to include other features, and
a machine learned model is the most effective way to join
these together.

In our experiments we use a simple Logistic Regression
model that is set to return true if vertex under consideration
is the answer and false otherwise. Through cross validation
we found that Logistic Regression with L2 regularization
strength of C = .1 using the SKLearn worked the best. We
also used two forms of feature standardization. For shortest
path metrics we standardized relative to all data points in
the same question, and for degree features with respect to
all data points.

Finally, we find that it is important to point out that the
classifier is dealing with a large class imbalance problem.
Since every question has approximately 3,000 candidates, it
is implied that there is a roughly 3,000 to 1 class imbalance.
We found that instead of using all of the negative class
training examples that we could use random majority class
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under-sampling and achieve comparable accuracy with much
less volume of data and training time.

To dig deeper on these features we ran a model which did
not use quadratic features then obtained the weights. Figure
4 shows the short name of each feature along with the logistic
regression weight. Since all features were standardized this
is an effective way to determine the effect and strength of
each features.

Immediately its not surprising that the harmonic distance
sum is a positive predictor (recall that higher is better on
this metric). The story is less clear on the other aggregate
metrics since they all seem to have the same value regardless
of search direction. In looking at the data it seemed that
there were large numbers of repeated values that could be
making these features not perform well. Due to this these
features may have simply become essentially constant factors.
Lastly, as expected the degree features act as de-biasing
mechanisms. That is, since their weights are negative they
negate the inherent centrality of high degree nodes on any
shortest path metric.

CS Harmonic Sum 0.446
SC Harmonic Sum .506

CS Inverse Distance Max -0.428
SC Inverse Distance Max -0.428
CS Inverse Distance Min -0.155
SC Inverse Distance Min -0.155

CS Inverse Distance Mean 0.446
SC Inverse Distance Mean 0.446

In Degree -0.0512
Out Degree -0.104

Log In Degree -0.188
Log Out Degree .-0.335

Figure 4: Logistic regression features weights for
each network feature. SC indicates seed to candi-
date distance, and CS indicates candidate to seed
distance

3.5 Efficient Many-to-Many Shortest Paths
As previously mentioned the core algorithm used to cal-

culate shortest paths is all pairs shortest paths between the
seed vertexes S and the candidate answers C. Since |S| ≈ 50
and |C| ≈ 3000 then approximately 150, 000 shortest paths
need to be computer per question. In the experimental re-
sults discussed in Section 5 we were severely limited in the
number of questions we were able to use. The computation
time of 100 questions exceeded 1 day and consumed 30GB
of RAM which motivated implementing an efficient version
of this search. Here we discuss the relevant details of this
implementation which we unfortunately ran out of time to
use in generating more data for experiments. Our in-progress
Rust implementation can be found at https://github.com/
Pinafore/qb/tree/guesser-refactor/wiki network. The cur-
rent version uses 15x less memory and appears to be much
faster, but we are in the process verifying its correctness
before using it.

3.5.1 Bidirectional Breadth First Search
Wikipedia is a small world graph which means that as one

performs a breadth first search traversal from any node the
number of nodes encountered is large. Another way this could
be seen is that the branching factor b of the Wikipedia graph

is large. This motivates the use of bidirectional breadth first
search. The method is relatively straightforward in that the
algorithm alternates between advancing a forward looking
BFS on the regular adjacency list, and a backward looking
BFS on the reverse adjacency list. At some point these
searches meet in the middle.

We were able to experimentally verify that the mean short-
est path lengths of the paths found in our data agrees with
the d ≈ 4.6. Figure 5 shows a histogram of all shortest
path distances in our experimental data. If one knows that
the mean distance d between knows is relatively fixed, then
the algorithmic efficiency of ordinary BFS can be written as
O(bd). Bidirectional BFS changes this performance bound

to a sum of searches with complexity O(bd/2). Theoretically
and in practice this yields a significant boost in performance.
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Figure 5: Histogram of shortest paths for shortest
path length pairs between S and C in both directions
for all questions.

3.5.2 Early Stopping
Figure 5 also shows that it is unnecessary to run shortest

paths to completion since the vast majority of nodes do not
have path length greater than 6. We therefore wrote an early
stopping rule into our algorithm which will terminate the
BFS once it reaches a maximum path length of 6.

3.5.3 Caching
The final optimization made in our many-to-many short-

est path algorithm is caching. This optimization becomes
obvious if one sees the search as a double for loop wrapped
around a single source, single destination shortest path search
as seen in figure 6. In this case it would be desirable to cache
the distances found in the outer loop when iterating over the
inner loop. In this example it would mean caching the seed
distances while iterating over the candidates which would
decrease the number of times those distances would otherwise
be computed by a factor of approximately 3,000 at only the
expense of keeping the seed distances for a particular seed
saved in memory.

4. TEXT FEATURES
Until now we have described the network only methods

used in our method. This was done specifically so that our
experiments can measure the effectiveness of the network
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Figure 6: Calculate shortest paths between S and C
Require: Wiki Graph G, seeds S, and candidates C
Ensure: paths = Map[(seed, candidate), distance]
paths← empty map
for all s ∈ S do

for all s ∈ C do
paths[(s, c)]← shortest path(G, s, c)

end for
end for

features, and text features separately. We now discuss the
text features we use.

With a finite set of answers as is the case for Quiz Bowl,
FQA tasks are often treated as multi-class classification prob-
lem over the answer set. This is how the DAN method works,
but unfortunately it introduces the problem that sufficient
training examples are needed per answer class. Similarly
to the network classifier, we instead take an approach to
binarize the task. That is, the task is to given a candidate
answer and its extracted features, decide whether or not the
candidate answer is correct.

In this section the only network method upon which the
text features depend on is obtaining an initial list of can-
didate answers. This allows for easy comparison between
the methods, and there isn’t an obvious way to generate a
smaller list of candidate answers. Its also computationally
expensive and introduces noise to for example just consider
all possible answers.

Thus, the task is for text features to rank the candidate
answers from the candidate answer set C. To accomplish this
we make use of unsupervised machine learning to compute
a similarity score between the question text and the text of
the answer.

There are lots of possible techniques we can explore to de-
sign the text features, such as the bag-of-word model, n-gram
features, the TF-IDF features and distributed representa-
tions of words. In this paper, we choose to use distributed
representations of words which are also known as word em-
beddings that have been trained on the wikipedia corpus.
The choice to use word embeddings is primarily due to the
rich semantic and synthetic relations that it captures. For
example, word2vec famously showed that the model captured
the relationship between man, women, queen, and king[8].
It is also possible to train such a model on Wikipedia text
directly so that the semantic relationship between Wikipedia
entities can also be captured.

Several models could be used for learning a dense word
embedding such as matrix factorization based methods such
as Singular Value Decomposition, Global Vector Embeddings
(Glove)[10], and the word2vec[8]. In this paper, we use the
word2vec model to learn word embeddings on a snapshot of
Wikipedia from 2014.

4.1 Skip-Gram model
The Skip-Gram model is one of the most popular word2vec

models that learns word embeddings by maximizing the
probability of the surrounding words given a pivot word in a
sentence.

4.1.1 Canonical Skip-Gram Model
The canonical model learns two sets of parameters Xw =
{v(w) ∈ Rd,∀w ∈ V } and Xc = {vc(c) ∈ Rd,∀c ∈ V },

where d is the dimension of the vector space to which we
project the words, V is the vocabulary, Xw is the word
embeddings we expect to learn as final results, and Xc is
the context embedding which we can view as the weights in
logistic regression models. For a given word pair (wt, c), the
model defines the probability that word c is observed in the
context window of pivot word wt as the softmax over all the
vocabulary:

P (vc(c)|v(wt)) =
exp(vc(c)

>v(wt))∑
wi∈V exp(vc(c)

>v(wi))
(1)

To prevent the trivial solution and pushes the unrelated
word vectors away from each other, the model introduces
negative sampling by randomly sampling some non-observed
words from a certain distribution and minimizing the proba-
bility P (vc(c)|v(wt)).

The goal is to maximize the objective function J(W,C) in
equation 2.

J(W,C) =
1

|V |
∑

wi∈V

∑
c∈Contextw

logP (vc(c)|v(wi)) (2)

4.1.2 Negative Sampling Skip-Gram model
The computation of the softmax layer in the canonical

Skip-Gram model is very expensive, because the normal-
ization factor requires iterating over all the words in the
vocabulary V , which can be very large. To address problem,
[?] proposed two solutions: Hierarchical Softmax, which is a
computationally efficient approximation of the full softmax,
and the Negative Sampling model.

The negative sampling model is a simplified version of the
Negative Contrastive Estimation. [?] suggest that it is not
necessary to exactly capture the same objective as long as
the vector representations retain their quality. They define
the negative sampling (NEG) objective as (for one central
word wi, context word pair wc),

logP (vc(c)|v(wi)) = log σ(vc(c)
>v(wi))

+

k∑
j=1

Ewj∼Pn(w)[log σ(−vc(wj)
>v(wi))]

(3)

where σ(•) represents the sigmoid function 1
1+exp(−•) ;

and the negative sampling distribution Pn(w) is propor-
tional to the 3/4 power of word frequency.
σ(vc(c)

>v(wi)) can be viewed as the probability that wc is
observed in the context of central word wi, and for negative
sample, the σ(−vc(wj)

>v(wi)) is the probability that wj is
not observed in the context of central word wi. Each pair of
word forms a logistic regression.

4.2 Ranking score based on BOW
The Skip-Gram model learns two sets of embeddings Xw =
{v(w) ∈ Rd,∀w ∈ V } and Xc = {vc(c) ∈ Rd,∀c ∈ V }, each
for words and contexts. In order to rank the possible answers
in the candidate sets, we compute the ranking score by:

P (θa|φq) =
1

1 + exp(−dot(θa, φq))
(4)
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where θa represents the vector representation of a possible
answer, and φq represents the vector representations of the
question. P (θa|φq) estimates the probability of having answer
a given the context of question q.

Each possible answer is a list of words a = [w
(i)
a ]mi=1, for

example, the answer Albert Einstein contains two words
[Albert, Einstein]. Each question is also a list of words

q = [w
(j)
q ]nj=1. To have the vector representation of answers

and questions, we use the bag-of-word model, i.e., the average
of word/context embeddings. In this case, we view the
questions as contexts of answers. Therefore,

θa =
1

m

m∑
i=1

v(w(i)
a ) (5)

φq =
1

n

n∑
j=1

vc(w
(j)
q ) (6)

The reason of using word embeddings for answers and
context embeddings for questions is that it fits the objective
function of the skip-gram models which maximize the co-
occurrence probability of a word-context pair (wi, wc) .

4.3 Multi-sense word embedding
One disadvantage of the word embeddings is that they

overlook the homonymy and polysemy words. Many ex-
periments have proved that learning multi-sense word em-
beddings will help to improve the performance of a variety
of tasks, especially tasks that rely on semantic relations of
words. Therefore, we also run experiments with the sense
embeddings of words. And we learn the sense embedding by
soft-attentional skip-gram model.

5. EXPERIMENTAL RESULTS
The primary evaluation of our methods is to compute the

recall R for each question. The main focus is on maximizing
recall within the first n ≈ 200 guesses.

In all the following experiments we use the subset of 5,624
questions which the multi-class classification based neural
methods are inherently incapable of answer since there is
exactly one instance of the answer.

Additionally, due to computational difficulty the experi-
ments on the network based features were only able to use
a set of 210 questions to perform evaluations on. We are
actively solving this problem with the efficient many-to-many
shortest paths algorithm described in Section 3, but do not
have results yet.

5.1 Network Features
To test our experimental setup was as follows. We selected

the following set of features to extract from each of the
distances from seeds to candidates and candidates to seeds:
harmonic distance, maximum inverse distance, minimum
inverse distance3, mean inverse distance, in degree, logarithm
of in degree, out degree, and logarithm of out degree. This
was further extended by using quadratic interaction between
all features. The Logistic Regression model in SKLearn was
used to train a model with regularization strength C = .1.

3Excluding the first entry since it is implicitly 1 since the
candidate was by definition d = 1 away from at least one
seed

Experimental results for this method are shown in figure
7. As noted before, a set of 200 questions was used for
evaluation. All of these question’s answers exist on the
Wikipedia graph, however only 108 of the question’s answers
are captured using vertexes d = 1 away from the seed vertexes
as candidates. Thus, the network features based method can
at best accomplish a recall of 108/200 = .54.

To evaluate the binary classifier random 75 train/25 test
splits of the question were used. For each split, the model
was trained on the training set and recall was computed on
the test set. The data from figure 7 was generated using 5
of these random splits. Variation between these are shown
via the error bars.
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Figure 7: Answer Recall versus the number of
guesses used. This plots recall against the 200 ques-
tion set and shows the maximum attainable recall of
the method

5.1.1 Random Majority Class Under-sampling
In exploring ways outside of simply getting more data to

make our model better we looked into random majority class
under-sampling. This method attempts to balance the class
ratio between positive examples (true answers) and negative
examples (wrong candidate answers). The effect is twofold:
the learning problem is easier, and since less data is used
it is computationally efficient. Without using this method,
the binary classifier trained for figure 7 trains on 256,728
examples.

With majority class under-sampling the total number of
training examples goes down to 162[1]. Experimental results
using under-sampling are shown in figure 8. Although the
model runs significantly faster, figure 8 shows that the overall
performance is not too greatly affected. The greatest effect
in fact is that the variance increases. For both these reasons
this classifier was run for 1- randomized folds rather than the
5 from the original classifier. With an increasing volume of
data from a faster network feature extractor majority class
under-sampling seems like a promising approach for dealing
with the large class imbalance problem.

5.2 Unsupervised Text Features
In Section 3 we describe how we generate the candidate

answer set C by selecting all nodes within d distance away
from the seed set S. For d = 1 this is simply the the neighbors
of the seed vertexes. Since the text methods are currently
computationally efficient we also consider run experiments
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Figure 8: Shows the same data from 7, but using
random majority class under-sampling

allowing any nodes within d = 2 to be included in C.
To study how the algorithm performance with different

hyper-parameters, we sampled 210 questions from the total
hard question set, and compared the recall of the algorithm
under different settings. Results are show in Figure 9. For
this figure, we can make two observations:

1. Generating seed vertices by matching up to 5-grams
can largely increase the recall by increasing the upper
bound.

2. Enlarging the candidate sets by adding in more vertices
that have geodesic distance = 2 from the seed vertices
does help to increase the upper bound to some extent.
However, it decreases the recall within top 100 guesses.

Based on these two observations, we can infer the conclu-
sion that including more candidate vertices by enlarging the
geodesic distance is a bad option, which is also reasonable,
because it will include not only several potential answers but
also much more negative answers at an exponential order; on
the other hand, matching seed vertices with up to 5-grams
can help with increase recall as we expected, for the reason
that it will not increase much irrelevant answers.

Then we compare the recall of using sense embeddings and
word embeddings, and study the true performance of this
methods by comparing with the upper bound of the network
based candidate-generating model we used under different
settings, i.e., the ratios of questions that have answers in the
candidate sets. Results are shown in Figure

From Figure 10, we can make several observations and
conclusions,

1. We can see that sense embeddings do help to achieve
larger recall in top k guesses, where 0 < k < 200.

2. The word/sense embedding based unsupervised model
converge quickly in top 200 guesses, and it can reach
relatively near to the upper bound.

3. Almost 80% of answers are include in the page titles
of the wiki graph. However, only 58.6% of answers are
in the neighbors of the seed vertices, this maybe the
bottleneck of this model.

Figure 9: Comparison of the recall of unsupervised
methods based on sense embeddings under different
hyper-parameters for selecting candidates vertices
in wiki graph.

Combining the observation we made from Figure 9 and
Figure 10, we can make the conclusion that to increase the
recall, we should study how to include more answers in the
candidate sets.

One possible solution could be increase the number of the
seed vertices and map page tiles to true answers by partial
string matching or word similarities instead of exact string
matching. Another way is to design better strategies of
generating candidate vertices based on network properties
by studying the missed answers.

5.3 Network and Text Features Combined
Unfortunately we did not have time to perform experiments

that incorporate both of these features. However, as seen in
our preliminary experimental results it appears that there is
much to be gained in using the Wikipedia network structure
even if to simply generate candidate answers for text meth-
ods to use. We also note that the network based classifier
methods are very data-starved so its performance is expected
to improve. For instance, note that with quadratic features
the number of features is on the same order as the number of
positive training examples. As shown with under-sampling
these were by far the most important for training. Even
then, the basic network methods shown in figure 7 achieved
about 30% recall at 200 guesses. Similar performance at 200
guesses could be seen in the embedding method that was
similarly restricted to d = 1 and unigram page matching in
figure 9 (light blue line). Figure 9 also highlights an obvious
area of improvement in extending the network methods to
capture using higher order n-grams. We are most interested
in performing experiments to find whether these methods are
both finding a set of common “easy” answers or are capturing
relatively disjoint sets of answer. If the second is the case
then overall combined performance could be boosted even
further.

6. CONCLUSION
In this work we introduce a novel method for FQA based

on using the network structure of the Wikipedia link graph.
In both the network and the text ranking based methods
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Figure 10: (1) The solid lines compare the recall of
using sense embeddings and word embeddings. (2)
The dotted lines show the upper bound of the net-
work based candidate-generating model under differ-
ent settings

discussed in Sections 3 and 4 respectively we show that this
is an effective mechanism for narrowing down to a more likely
set of answers. We also show that this list of on average
about 3,000 vertexes can be further cut down to a list of 200
guesses without decreasing overall recall by too much.

With network features this was done with using shortest
path distances from the seed vertexes S to the candidate
vertexes C and vice versa. Additional features such as in-
degree and out-degree were also incorporated.

Text features achieved good recall by using unsupervised
word embeddings trained on Wikipedia to compute a seman-
tic similarity score to rank by. Experiments also showed that
more permissive methods of allowing vertexes into the seed
set S can be used to increase the maximum recall possible.
However, it is still unclear which methods would overall per-
form better. For example, recall with d = 1 was superior for
low n in figure 9, it achieved a lower maximum recall than a
candidate set of d = 2 vertexes.

Experiments have also not yet been performed comparing
the effect of each feature independently, and when combined
together. It seems that since these methods are quite orthog-
onal in approach the additive performance effect should be
large, but this will need to be confirmed experimentally.

These results are especially encouraging since reasonable
performance is being achieved on a set of questions for which
DAN and therefore the current QANTA system are incapable
of answering. Even then, there still remains ample areas for
improvement in both of these methods by increasing recall
at a small number of guesses, and increasing the maximum
attainable recall.

7. FUTURE WORK
Through discussion of all these methods several directions

for future work have been highlighted. In this section we
explicitly enumerate the methods we intend on experimenting
with.

1. Use the text features in the network classifier to de-
termine how additive the features are in recall perfor-

mance.

2. Use the efficient many-to-many shortest paths to create
a larger training set.

3. In the network method increase 1-gram matching to
5-gram matching.

4. In both the network and text methods test max length
n-gram matching. For example, “Leo Szilard” would
match “Leo Szilard”, but not “Leo” or “Szilard” since
that text would already be matched.

5. In both the network and text methods limit entries
in the candidate set to those present in the quiz bowl
answer set.

6. Use better Wikipedia entity disambiguation and NLP
stemming techniques to produce higher quality page
matches[11][5]. For example, in figure 2 “parts” should
map to “part”.

7. Perform error analysis over different classes of errors.
First, look at examples when the answer was not cap-
tured and the feasibility of changing the matching rules
to improve this. Second, look at examples where the
answer is captured but not recalled to the top 200.
Finally, determine why many answers do not match to
entities on the Wikipedia graph.

8. REFERENCES
[1] scikit-learn-contrib/imbalanched-learn: Python module

to perform under sampling and over sampling with
various techniques.

[2] Using the wikipedia link dataset - henry haselgrove.
https://web.archive.org/web/20160516004046/http:
//haselgrove.id.au/wikipedia.htm.

[3] Wikipedia:wiki game - wikipedia.
https://en.wikipedia.org/wiki/Wikipedia:Wiki Game.

[4] J. Boyd-Graber, B. Satinoff, H. He, and H. Daumé III.
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